October  2006, 14(4): 753-782. doi: 10.3934/dcds.2006.14.753

Averaging of time - periodic systems without a small parameter

1. 

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Paris, France

2. 

Département Terre-Atmosphère-Océan and, Laboratoire de Météorologie Dynamique du CNRS/IPSL, École Normale Supérieure, Paris, France

3. 

Laboratoire de Météorologie Dynamique du CNRS/IPSL, École Normale Supérieure, Paris, France

4. 

Institute of Geophysics and Planetary Physics, University of California, Los Angeles, United States

Received  January 2005 Revised  May 2005 Published  January 2006

In this article, we present a new approach to averaging in non-Hamiltonian systems with periodic forcing. The results here do not depend on the existence of a small parameter. In fact, we show that our averaging method fits into an appropriate nonlinear equivalence problem, and that this problem can be solved formally by using the Lie transform framework to linearize it. According to this approach, we derive formal coordinate transformations associated with both first-order and higher-order averaging, which result in more manageable formulae than the classical ones.
  Using these transformations, it is possible to correct the solution of an averaged system by recovering the oscillatory components of the original non-averaged system. In this framework, the inverse transformations are also defined explicitly by formal series; they allow the estimation of appropriate initial data for each higher-order averaged system, respecting the equivalence relation.
  Finally, we show how these methods can be used for identifying and computing periodic solutions for a very large class of nonlinear systems with time-periodic forcing. We test the validity of our approach by analyzing both the first-order and the second-order averaged system for a problem in atmospheric chemistry.
Citation: Mickael Chekroun, Michael Ghil, Jean Roux, Ferenc Varadi. Averaging of time - periodic systems without a small parameter. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 753-782. doi: 10.3934/dcds.2006.14.753
[1]

Ruichao Guo, Yong Li, Jiamin Xing, Xue Yang. Existence of periodic solutions of dynamic equations on time scales by averaging. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 959-971. doi: 10.3934/dcdss.2017050

[2]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[3]

Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9

[4]

Madalina Petcu, Roger Temam, Djoko Wirosoetisno. Averaging method applied to the three-dimensional primitive equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5681-5707. doi: 10.3934/dcds.2016049

[5]

Wei Mao, Liangjian Hu, Surong You, Xuerong Mao. The averaging method for multivalued SDEs with jumps and non-Lipschitz coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4937-4954. doi: 10.3934/dcdsb.2019039

[6]

Martin Heida, Alexander Mielke. Averaging of time-periodic dissipation potentials in rate-independent processes. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1303-1327. doi: 10.3934/dcdss.2017070

[7]

David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353

[8]

Fernando Casas, Cristina Chiralt. A Lie--Deprit perturbation algorithm for linear differential equations with periodic coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 959-975. doi: 10.3934/dcds.2014.34.959

[9]

Jiawei Dou, Lan-sun Chen, Kaitai Li. A monotone-iterative method for finding periodic solutions of an impulsive competition system on tumor-normal cell interaction. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 555-562. doi: 10.3934/dcdsb.2004.4.555

[10]

P.E. Kloeden, Pedro Marín-Rubio, José Real. Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 785-802. doi: 10.3934/cpaa.2009.8.785

[11]

François James, Nicolas Vauchelet. Equivalence between duality and gradient flow solutions for one-dimensional aggregation equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1355-1382. doi: 10.3934/dcds.2016.36.1355

[12]

Weina Wang, Chunlin Wu, Jiansong Deng. Piecewise constant signal and image denoising using a selective averaging method with multiple neighbors. Inverse Problems & Imaging, 2019, 13 (5) : 903-930. doi: 10.3934/ipi.2019041

[13]

Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Bridging the gap between variational homogenization results and two-scale asymptotic averaging techniques on periodic network structures. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 223-250. doi: 10.3934/naco.2017016

[14]

Venkateswaran P. Krishnan, Ramesh Manna, Suman Kumar Sahoo, Vladimir A. Sharafutdinov. Momentum ray transforms. Inverse Problems & Imaging, 2019, 13 (3) : 679-701. doi: 10.3934/ipi.2019031

[15]

Nicholas Hoell, Guillaume Bal. Ray transforms on a conformal class of curves. Inverse Problems & Imaging, 2014, 8 (1) : 103-125. doi: 10.3934/ipi.2014.8.103

[16]

Keonhee Lee, Kazuhiro Sakai. Various shadowing properties and their equivalence. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 533-540. doi: 10.3934/dcds.2005.13.533

[17]

Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Advances in Mathematics of Communications, 2010, 4 (1) : 69-81. doi: 10.3934/amc.2010.4.69

[18]

José Luis Bravo, Manuel Fernández, Antonio Tineo. Periodic solutions of a periodic scalar piecewise ode. Communications on Pure & Applied Analysis, 2007, 6 (1) : 213-228. doi: 10.3934/cpaa.2007.6.213

[19]

Xiaoyan Lin, Xianhua Tang. Solutions of nonlinear periodic Dirac equations with periodic potentials. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2051-2061. doi: 10.3934/dcdss.2019132

[20]

Juan Belmonte-Beitia, Víctor M. Pérez-García, Vadym Vekslerchik, Pedro J. Torres. Lie symmetries, qualitative analysis and exact solutions of nonlinear Schrödinger equations with inhomogeneous nonlinearities. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 221-233. doi: 10.3934/dcdsb.2008.9.221

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (4)

[Back to Top]