# American Institute of Mathematical Sciences

November  2006, 15(4): 1193-1214. doi: 10.3934/dcds.2006.15.1193

## Global attractor for a parabolic-hyperbolic Penrose-Fife phase field system

 1 Dipartimento di Matematica, Università di Milano, Via Saldini, 50, I-20133 Milano, Italy 2 Dipartimento di Matematica "F.Casorati", Università di Pavia, Via Ferrata, 1, I-27100 Pavia, Italy

Received  December 2004 Revised  July 2005 Published  May 2006

A singular nonlinear parabolic-hyperbolic PDE's system describing the evolution of a material subject to a phase transition is considered. The goal of the present paper is to analyze the asymptotic behaviour of the associated dynamical system from the point of view of global attractors. The physical variables involved in the process are the absolute temperature $\vartheta$ (whose evolution is governed by a parabolic singular equation coming from the Penrose-Fife theory) and the order parameter $\chi$ (whose evolution is ruled by a nonlinear damped hyperbolic relation coming from a hyperbolic relaxation of the Allen-Cahn equation). Dissipativity of the system and the existence of a global attractor are proved. Due to questions of regularity, the one space dimensional case (1D) and the 2D - 3D cases require different sets of hypotheses and have to be settled in slightly different functional spaces.
Citation: Elisabetta Rocca, Giulio Schimperna. Global attractor for a parabolic-hyperbolic Penrose-Fife phase field system. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1193-1214. doi: 10.3934/dcds.2006.15.1193
 [1] Alain Miranville, Elisabetta Rocca, Giulio Schimperna, Antonio Segatti. The Penrose-Fife phase-field model with coupled dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4259-4290. doi: 10.3934/dcds.2014.34.4259 [2] M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure and Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 [3] Michiel Bertsch, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. Standing and travelling waves in a parabolic-hyperbolic system. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5603-5635. doi: 10.3934/dcds.2019246 [4] Ken Shirakawa. Solvability for phase field systems of Penrose-Fife type associated with $p$-laplacian diffusions. Conference Publications, 2007, 2007 (Special) : 927-937. doi: 10.3934/proc.2007.2007.927 [5] Gilbert Peralta, Karl Kunisch. Interface stabilization of a parabolic-hyperbolic pde system with delay in the interaction. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3055-3083. doi: 10.3934/dcds.2018133 [6] Enrique Fernández-Cara, Luz de Teresa. Null controllability of a cascade system of parabolic-hyperbolic equations. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 699-714. doi: 10.3934/dcds.2004.11.699 [7] M. Grasselli, Hana Petzeltová, Giulio Schimperna. Convergence to stationary solutions for a parabolic-hyperbolic phase-field system. Communications on Pure and Applied Analysis, 2006, 5 (4) : 827-838. doi: 10.3934/cpaa.2006.5.827 [8] Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226 [9] Young-Sam Kwon. Strong traces for degenerate parabolic-hyperbolic equations. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1275-1286. doi: 10.3934/dcds.2009.25.1275 [10] Enrique Fernández-Cara, Manuel González-Burgos, Luz de Teresa. Null-exact controllability of a semilinear cascade system of parabolic-hyperbolic equations. Communications on Pure and Applied Analysis, 2006, 5 (3) : 639-658. doi: 10.3934/cpaa.2006.5.639 [11] George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417 [12] Valerii Maltsev, Michael Pokojovy. On a parabolic-hyperbolic filter for multicolor image noise reduction. Evolution Equations and Control Theory, 2016, 5 (2) : 251-272. doi: 10.3934/eect.2016004 [13] G. Métivier, K. Zumbrun. Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 205-220. doi: 10.3934/dcds.2004.11.205 [14] Boris Andreianov, Mohamed Karimou Gazibo. Explicit formulation for the Dirichlet problem for parabolic-hyperbolic conservation laws. Networks and Heterogeneous Media, 2016, 11 (2) : 203-222. doi: 10.3934/nhm.2016.11.203 [15] Zhigang Wang, Lei Wang, Yachun Li. Renormalized entropy solutions for degenerate parabolic-hyperbolic equations with time-space dependent coefficients. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1163-1182. doi: 10.3934/cpaa.2013.12.1163 [16] Xingwen Hao, Yachun Li, Qin Wang. A kinetic approach to error estimate for nonautonomous anisotropic degenerate parabolic-hyperbolic equations. Kinetic and Related Models, 2014, 7 (3) : 477-492. doi: 10.3934/krm.2014.7.477 [17] Hiroshi Matano, Ken-Ichi Nakamura. The global attractor of semilinear parabolic equations on $S^1$. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 1-24. doi: 10.3934/dcds.1997.3.1 [18] Irena PawŁow. The Cahn--Hilliard--de Gennes and generalized Penrose--Fife models for polymer phase separation. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2711-2739. doi: 10.3934/dcds.2015.35.2711 [19] Francesca R. Guarguaglini. Global solutions for a chemotaxis hyperbolic-parabolic system on networks with nonhomogeneous boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1057-1087. doi: 10.3934/cpaa.2020049 [20] Volodymyr O. Kapustyan, Ivan O. Pyshnograiev, Olena A. Kapustian. Quasi-optimal control with a general quadratic criterion in a special norm for systems described by parabolic-hyperbolic equations with non-local boundary conditions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1243-1258. doi: 10.3934/dcdsb.2019014

2020 Impact Factor: 1.392

## Metrics

• HTML views (0)
• Cited by (1)

• on AIMS