February  2006, 15(1): 159-176. doi: 10.3934/dcds.2006.15.159

Decay of correlations for non-Hölder observables for one-dimensional expanding Lorenz-like maps

1. 

Mathematics Department, Imperial College, 180 Queen's Gate, SW7 2AZ, London, United Kingdom

Received  October 2005 Revised  December 2005 Published  February 2006

We prove that a one-dimensional expanding Lorenz-like map admits an induced Markov structure which allows us to obtain estimates for the rates of mixing for observables with weaker regularity than Hölder.
Citation: Karla Díaz-Ordaz. Decay of correlations for non-Hölder observables for one-dimensional expanding Lorenz-like maps. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 159-176. doi: 10.3934/dcds.2006.15.159
[1]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[4]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[5]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]