May  2006, 15(2): 681-701. doi: 10.3934/dcds.2006.15.681

Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations

1. 

Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio, United States

2. 

Department of Mathematics, Hunan Normal University, Changsha, Hunan

Received  January 2005 Revised  October 2005 Published  March 2006

We investigate the local stability of traveling-wave solutions of the nonlinear reaction-diffusion equations in various weighted Banach spaces. New methods are used in analyzing the location of the spectrum. The result covers the stability results of the traveling-wave solutions of reaction-diffusion equations including the well known Fisher-KPP-type nonlinearity.
Citation: Xiaojie Hou, Yi Li. Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2006, 15 (2) : 681-701. doi: 10.3934/dcds.2006.15.681
[1]

Gregoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1785-1803. doi: 10.3934/dcdsb.2015.20.1785

[2]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[3]

Patrick Martinez, Jean-Michel Roquejoffre. The rate of attraction of super-critical waves in a Fisher-KPP type model with shear flow. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2445-2472. doi: 10.3934/cpaa.2012.11.2445

[4]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[5]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[6]

Matthieu Alfaro, Arnaud Ducrot. Sharp interface limit of the Fisher-KPP equation. Communications on Pure & Applied Analysis, 2012, 11 (1) : 1-18. doi: 10.3934/cpaa.2012.11.1

[7]

Yanni Zeng, Kun Zhao. On the logarithmic Keller-Segel-Fisher/KPP system. Discrete & Continuous Dynamical Systems, 2019, 39 (9) : 5365-5402. doi: 10.3934/dcds.2019220

[8]

Laura Levaggi. Existence of sliding motions for nonlinear evolution equations in Banach spaces. Conference Publications, 2013, 2013 (special) : 477-487. doi: 10.3934/proc.2013.2013.477

[9]

Daliang Zhao, Yansheng Liu. Controllability of nonlinear fractional evolution systems in Banach spaces: A survey. Electronic Research Archive, , () : -. doi: 10.3934/era.2021083

[10]

Costică Moroşanu. Stability and errors analysis of two iterative schemes of fractional steps type associated to a nonlinear reaction-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (5) : 1567-1587. doi: 10.3934/dcdss.2020089

[11]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[12]

Michio Urano, Kimie Nakashima, Yoshio Yamada. Transition layers and spikes for a reaction-diffusion equation with bistable nonlinearity. Conference Publications, 2005, 2005 (Special) : 868-877. doi: 10.3934/proc.2005.2005.868

[13]

Sonja Cox, Arnulf Jentzen, Ryan Kurniawan, Primož Pušnik. On the mild Itô formula in Banach spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2217-2243. doi: 10.3934/dcdsb.2018232

[14]

Benjamin Contri. Fisher-KPP equations and applications to a model in medical sciences. Networks & Heterogeneous Media, 2018, 13 (1) : 119-153. doi: 10.3934/nhm.2018006

[15]

François Hamel, James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik. A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Networks & Heterogeneous Media, 2013, 8 (1) : 275-289. doi: 10.3934/nhm.2013.8.275

[16]

Wenxian Shen, Zhongwei Shen. Transition fronts in nonlocal Fisher-KPP equations in time heterogeneous media. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1193-1213. doi: 10.3934/cpaa.2016.15.1193

[17]

Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087

[18]

Lina Wang, Xueli Bai, Yang Cao. Exponential stability of the traveling fronts for a viscous Fisher-KPP equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 801-815. doi: 10.3934/dcdsb.2014.19.801

[19]

Karel Hasik, Sergei Trofimchuk. Slowly oscillating wavefronts of the KPP-Fisher delayed equation. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3511-3533. doi: 10.3934/dcds.2014.34.3511

[20]

Matt Holzer. A proof of anomalous invasion speeds in a system of coupled Fisher-KPP equations. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 2069-2084. doi: 10.3934/dcds.2016.36.2069

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (99)
  • HTML views (0)
  • Cited by (24)

Other articles
by authors

[Back to Top]