\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Universal skyscraper templates for infinite measure preserving transformations

Abstract Related Papers Cited by
  • We call an ordered set $\mathbf{c} = (c(i): i \in \mathbb{N})$, of nonnegative extended real numbers $c(i)$, a universal skyscraper template if it is the distribution of first return times for every ergodic measure preserving transformation $T$ of an infinite Lebesgue measure space. If ∑ i$ c(i)<\infty$, we give a family of examples of ergodic infinite measure preserving transformations that do not admit c as a skyscraper template.
        If the distribution $\mathbf{c}$ satisfies $\gcd\{i: c(i) >0 \} = 1 $, and if either of the conditions $c(I) = \infty$ (for some integer $I$), or $i n f_i \{c(i) \} > 0$ is satisfied, then $\mathbf{c}$ is a universal skyscraper template.
    Mathematics Subject Classification: Primary: 37A45, 28D05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return