-
Previous Article
Tiling Abelian groups with a single tile
- DCDS Home
- This Issue
-
Next Article
Symbolic extension entropy: $c^r$ examples, products and flows
Universal skyscraper templates for infinite measure preserving transformations
1. | Northeastern University, Department of Mathematics, Boston, MA 02115, United States, United States |
2. | University of Massachusetts Lowell, Department of Mathematics, One University Avenue, Lowell, MA 01854, United States |
If the distribution $\mathbf{c}$ satisfies $\gcd\{i: c(i) >0 \} = 1 $, and if either of the conditions $c(I) = \infty$ (for some integer $I$), or $i n f_i \{c(i) \} > 0$ is satisfied, then $\mathbf{c}$ is a universal skyscraper template.
[1] |
Roland Zweimüller. Asymptotic orbit complexity of infinite measure preserving transformations. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 353-366. doi: 10.3934/dcds.2006.15.353 |
[2] |
Roland Gunesch, Anatole Katok. Construction of weakly mixing diffeomorphisms preserving measurable Riemannian metric and smooth measure. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 61-88. doi: 10.3934/dcds.2000.6.61 |
[3] |
Nasab Yassine. Quantitative recurrence of some dynamical systems preserving an infinite measure in dimension one. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 343-361. doi: 10.3934/dcds.2018017 |
[4] |
Rui Kuang, Xiangdong Ye. The return times set and mixing for measure preserving transformations. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 817-827. doi: 10.3934/dcds.2007.18.817 |
[5] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[6] |
Simeon Reich, Alexander J. Zaslavski. Convergence of generic infinite products of homogeneous order-preserving mappings. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 929-945. doi: 10.3934/dcds.1999.5.929 |
[7] |
Yanfeng Qi, Chunming Tang, Zhengchun Zhou, Cuiling Fan. Several infinite families of p-ary weakly regular bent functions. Advances in Mathematics of Communications, 2018, 12 (2) : 303-315. doi: 10.3934/amc.2018019 |
[8] |
Guizhen Cui, Yan Gao. Wandering continua for rational maps. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1321-1329. doi: 10.3934/dcds.2016.36.1321 |
[9] |
Guizhen Cui, Wenjuan Peng, Lei Tan. On the topology of wandering Julia components. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 929-952. doi: 10.3934/dcds.2011.29.929 |
[10] |
Roland Gunesch, Philipp Kunde. Weakly mixing diffeomorphisms preserving a measurable Riemannian metric with prescribed Liouville rotation behavior. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1615-1655. doi: 10.3934/dcds.2018067 |
[11] |
Michael Baake, Daniel Lenz. Spectral notions of aperiodic order. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 161-190. doi: 10.3934/dcdss.2017009 |
[12] |
Ian Melbourne, Dalia Terhesiu. Mixing properties for toral extensions of slowly mixing dynamical systems with finite and infinite measure. Journal of Modern Dynamics, 2018, 12: 285-313. doi: 10.3934/jmd.2018011 |
[13] |
Van Cyr, John Franks, Bryna Kra, Samuel Petite. Distortion and the automorphism group of a shift. Journal of Modern Dynamics, 2018, 13: 147-161. doi: 10.3934/jmd.2018015 |
[14] |
Alexander Blokh. Necessary conditions for the existence of wandering triangles for cubic laminations. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 13-34. doi: 10.3934/dcds.2005.13.13 |
[15] |
Song Shao, Xiangdong Ye. Non-wandering sets of the powers of maps of a star. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1175-1184. doi: 10.3934/dcds.2003.9.1175 |
[16] |
Xavier Dubois de La Sablonière, Benjamin Mauroy, Yannick Privat. Shape minimization of the dissipated energy in dyadic trees. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 767-799. doi: 10.3934/dcdsb.2011.16.767 |
[17] |
Alexey Cheskidov, Susan Friedlander, Nataša Pavlović. An inviscid dyadic model of turbulence: The global attractor. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 781-794. doi: 10.3934/dcds.2010.26.781 |
[18] |
David Cruz-Uribe, SFO, José María Martell, Carlos Pérez. Sharp weighted estimates for approximating dyadic operators. Electronic Research Announcements, 2010, 17: 12-19. doi: 10.3934/era.2010.17.12 |
[19] |
Mariusz Lemańczyk, Clemens Müllner. Automatic sequences are orthogonal to aperiodic multiplicative functions. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6877-6918. doi: 10.3934/dcds.2020260 |
[20] |
Zhen Li, Cuiling Fan, Wei Su, Yanfeng Qi. Aperiodic/periodic complementary sequence pairs over quaternions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021063 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]