June  2006, 16(2): 383-392. doi: 10.3934/dcds.2006.16.383

Every ergodic measure is uniquely maximizing

1. 

School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS

Received  April 2005 Revised  November 2005 Published  July 2006

Let $M_{\phi}$ denote the set of Borel probability measures invariant under a topological action $\phi$ on a compact metrizable space $X$. For a continuous function $f:X\to\R$, a measure $\mu\in\M_{\phi}$ is called $f$-maximizing if $\int f\, d\mu = s u p\{\int f dm:m\in\M_{\phi}\}$. It is shown that if $\mu$ is any ergodic measure in $\M_{\phi}$, then there exists a continuous function whose unique maximizing measure is $\mu$. More generally, if $\mathcal E$ is a non-empty collection of ergodic measures which is weak$^*$ closed as a subset of $\M_{\phi}$, then there exists a continuous function whose set of maximizing measures is precisely the closed convex hull of $\mathcal E$. If moreover $\phi$ has the property that its entropy map is upper semi-continuous, then there exists a continuous function whose set of equilibrium states is precisely the closed convex hull of $\mathcal E$.
Citation: Oliver Jenkinson. Every ergodic measure is uniquely maximizing. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 383-392. doi: 10.3934/dcds.2006.16.383
[1]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[2]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[3]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[4]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[5]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[6]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[7]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[8]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[9]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[10]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]