-
Previous Article
Unique ergodicity for non-uniquely ergodic horocycle flows
- DCDS Home
- This Issue
-
Next Article
A piece-wise affine contracting map with positive entropy
Entropy via multiplicity
1. | Institute of Mathematics and Statistics, University of Troms∅, N-9037 Troms∅ |
[1] |
P.E. Kloeden, Victor S. Kozyakin. The perturbation of attractors of skew-product flows with a shadowing driving system. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 883-893. doi: 10.3934/dcds.2001.7.883 |
[2] |
Saša Kocić. Reducibility of skew-product systems with multidimensional Brjuno base flows. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 261-283. doi: 10.3934/dcds.2011.29.261 |
[3] |
Tomás Caraballo, Alexandre N. Carvalho, Henrique B. da Costa, José A. Langa. Equi-attraction and continuity of attractors for skew-product semiflows. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 2949-2967. doi: 10.3934/dcdsb.2016081 |
[4] |
Jozef Bobok, Martin Soukenka. On piecewise affine interval maps with countably many laps. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 753-762. doi: 10.3934/dcds.2011.31.753 |
[5] |
Juan A. Calzada, Rafael Obaya, Ana M. Sanz. Continuous separation for monotone skew-product semiflows: From theoretical to numerical results. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 915-944. doi: 10.3934/dcdsb.2015.20.915 |
[6] |
Sylvia Novo, Carmen Núñez, Rafael Obaya, Ana M. Sanz. Skew-product semiflows for non-autonomous partial functional differential equations with delay. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4291-4321. doi: 10.3934/dcds.2014.34.4291 |
[7] |
Bogdan Sasu, A. L. Sasu. Input-output conditions for the asymptotic behavior of linear skew-product flows and applications. Communications on Pure and Applied Analysis, 2006, 5 (3) : 551-569. doi: 10.3934/cpaa.2006.5.551 |
[8] |
Michał Misiurewicz, Peter Raith. Strict inequalities for the entropy of transitive piecewise monotone maps. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 451-468. doi: 10.3934/dcds.2005.13.451 |
[9] |
Lorenzo Sella, Pieter Collins. Computation of symbolic dynamics for two-dimensional piecewise-affine maps. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 739-767. doi: 10.3934/dcdsb.2011.15.739 |
[10] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[11] |
Michel Laurent, Arnaldo Nogueira. Dynamics of 2-interval piecewise affine maps and Hecke-Mahler series. Journal of Modern Dynamics, 2021, 17: 33-63. doi: 10.3934/jmd.2021002 |
[12] |
Changzhi Wu, Kok Lay Teo, Volker Rehbock. Optimal control of piecewise affine systems with piecewise affine state feedback. Journal of Industrial and Management Optimization, 2009, 5 (4) : 737-747. doi: 10.3934/jimo.2009.5.737 |
[13] |
O. A. Veliev. Essential spectral singularities and the spectral expansion for the Hill operator. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2227-2251. doi: 10.3934/cpaa.2017110 |
[14] |
Peng Sun. Measures of intermediate entropies for skew product diffeomorphisms. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1219-1231. doi: 10.3934/dcds.2010.27.1219 |
[15] |
Haritha C, Nikita Agarwal. Product of expansive Markov maps with hole. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5743-5774. doi: 10.3934/dcds.2019252 |
[16] |
Núria Fagella, Àngel Jorba, Marc Jorba-Cuscó, Joan Carles Tatjer. Classification of linear skew-products of the complex plane and an affine route to fractalization. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3767-3787. doi: 10.3934/dcds.2019153 |
[17] |
Wen Huang, Leiye Xu, Shengnan Xu. Ergodic measures of intermediate entropy for affine transformations of nilmanifolds. Electronic Research Archive, 2021, 29 (4) : 2819-2827. doi: 10.3934/era.2021015 |
[18] |
Nicolas Fournier. A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff. Kinetic and Related Models, 2019, 12 (3) : 483-505. doi: 10.3934/krm.2019020 |
[19] |
Julia Brettschneider. On uniform convergence in ergodic theorems for a class of skew product transformations. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 873-891. doi: 10.3934/dcds.2011.29.873 |
[20] |
Michael Blank. Finite rank approximations of expanding maps with neutral singularities. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 749-762. doi: 10.3934/dcds.2008.21.749 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]