
Previous Article
Regularity of the NavierStokes equation in a thin periodic domain with large data
 DCDS Home
 This Issue

Next Article
Decay of correlations for nonHölder observables
Stability of travelling waves with algebraic decay for $n$degree Fishertype equations
1.  Department of Mathematics, Capital Normal University, Beijing 100037, China 
2.  College of Applied Science, Beijing University of Technology, Beijing 100022, China 
3.  Department of Mathematics, Beijing Institute of Technology, Beijing 100081, China 
[1] 
Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, Irena Lasiecka, Flávio A. Falcão Nascimento. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete & Continuous Dynamical Systems  B, 2014, 19 (7) : 19872011. doi: 10.3934/dcdsb.2014.19.1987 
[2] 
Vu Hoang Linh, Volker Mehrmann. Spectral analysis for linear differentialalgebraic equations. Conference Publications, 2011, 2011 (Special) : 9911000. doi: 10.3934/proc.2011.2011.991 
[3] 
Imen Manoubi. Theoretical and numerical analysis of the decay rate of solutions to a water wave model with a nonlocal viscous dispersive term with RiemannLiouville half derivative. Discrete & Continuous Dynamical Systems  B, 2014, 19 (9) : 28372863. doi: 10.3934/dcdsb.2014.19.2837 
[4] 
Belkacem SaidHouari, Salim A. Messaoudi. General decay estimates for a Cauchy viscoelastic wave problem. Communications on Pure & Applied Analysis, 2014, 13 (4) : 15411551. doi: 10.3934/cpaa.2014.13.1541 
[5] 
Arnaud Ducrot, Michel Langlais, Pierre Magal. Qualitative analysis and travelling wave solutions for the SI model with vertical transmission. Communications on Pure & Applied Analysis, 2012, 11 (1) : 97113. doi: 10.3934/cpaa.2012.11.97 
[6] 
Abdelaziz Soufyane, Belkacem SaidHouari. The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system. Evolution Equations & Control Theory, 2014, 3 (4) : 713738. doi: 10.3934/eect.2014.3.713 
[7] 
ClaudeMichel Brauner, Josephus Hulshof, Luca Lorenzi. Stability of the travelling wave in a 2D weakly nonlinear Stefan problem. Kinetic & Related Models, 2009, 2 (1) : 109134. doi: 10.3934/krm.2009.2.109 
[8] 
Hongmei Cheng, Rong Yuan. Existence and asymptotic stability of traveling fronts for nonlocal monostable evolution equations. Discrete & Continuous Dynamical Systems  B, 2017, 22 (7) : 30073022. doi: 10.3934/dcdsb.2017160 
[9] 
Shiwang Ma, XiaoQiang Zhao. Global asymptotic stability of minimal fronts in monostable lattice equations. Discrete & Continuous Dynamical Systems  A, 2008, 21 (1) : 259275. doi: 10.3934/dcds.2008.21.259 
[10] 
Roberto Triggiani, Jing Zhang. Heatviscoelastic plate interaction: Analyticity, spectral analysis, exponential decay. Evolution Equations & Control Theory, 2018, 7 (1) : 153182. doi: 10.3934/eect.2018008 
[11] 
Linghai Zhang. Wave speed analysis of traveling wave fronts in delayed synaptically coupled neuronal networks. Discrete & Continuous Dynamical Systems  A, 2014, 34 (5) : 24052450. doi: 10.3934/dcds.2014.34.2405 
[12] 
Yan Cui, Zhiqiang Wang. Asymptotic stability of wave equations coupled by velocities. Mathematical Control & Related Fields, 2016, 6 (3) : 429446. doi: 10.3934/mcrf.2016010 
[13] 
Kun Li, Jianhua Huang, Xiong Li. Asymptotic behavior and uniqueness of traveling wave fronts in a delayed nonlocal dispersal competitive system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 131150. doi: 10.3934/cpaa.2017006 
[14] 
Yaru Xie, Genqi Xu. The exponential decay rate of generic tree of 1d wave equations with boundary feedback controls. Networks & Heterogeneous Media, 2016, 11 (3) : 527543. doi: 10.3934/nhm.2016008 
[15] 
Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed KleinGordon equation. Conference Publications, 2015, 2015 (special) : 359368. doi: 10.3934/proc.2015.0359 
[16] 
Farah Abdallah, Denis Mercier, Serge Nicaise. Spectral analysis and exponential or polynomial stability of some indefinite sign damped problems. Evolution Equations & Control Theory, 2013, 2 (1) : 133. doi: 10.3934/eect.2013.2.1 
[17] 
Armand Bernou. A semigroup approach to the convergence rate of a collisionless gas. Kinetic & Related Models, , () : . doi: 10.3934/krm.2020038 
[18] 
ShiLiang Wu, TongChang Niu, ChengHsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reactiondiffusion equations. Discrete & Continuous Dynamical Systems  A, 2017, 37 (6) : 34673486. doi: 10.3934/dcds.2017147 
[19] 
Guangying Lv, Mingxin Wang. Existence, uniqueness and stability of traveling wave fronts of discrete quasilinear equations with delay. Discrete & Continuous Dynamical Systems  B, 2010, 13 (2) : 415433. doi: 10.3934/dcdsb.2010.13.415 
[20] 
Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the DirichlettoNeumann map. Inverse Problems & Imaging, 2011, 5 (4) : 745773. doi: 10.3934/ipi.2011.5.745 
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]