$ -\text{div}( M(x)\nabla u)- a\frac{u}{|x|^2}=f \text{ in } \Omega, \qquad u=0 \text{ on } \partial \Omega$,
with respect to the summability of $f$ and the value of the parameter $a$. Here $\Omega$ is a bounded domain in $\mathbb{R}^N$ containing the origin.
Citation: |