-
Previous Article
Quasi-periodic solutions of nonlinear wave equations with a prescribed potential
- DCDS Home
- This Issue
-
Next Article
Universal bounds for quasilinear parabolic equations with convection
Pullback attractors of nonautonomous dynamical systems
1. | School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China, China |
2. | Department of Mathematics, Shanghai University, Shanghai, 200436, China |
[1] |
Igor Kukavica. Interior gradient bounds for the 2D Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 873-882. doi: 10.3934/dcds.2001.7.873 |
[2] |
Julia García-Luengo, Pedro Marín-Rubio, José Real. Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1603-1621. doi: 10.3934/cpaa.2015.14.1603 |
[3] |
Songsong Lu, Hongqing Wu, Chengkui Zhong. Attractors for nonautonomous 2d Navier-Stokes equations with normal external forces. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 701-719. doi: 10.3934/dcds.2005.13.701 |
[4] |
Vena Pearl Bongolan-walsh, David Cheban, Jinqiao Duan. Recurrent motions in the nonautonomous Navier-Stokes system. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 255-262. doi: 10.3934/dcdsb.2003.3.255 |
[5] |
Atanas Stefanov. On the Lipschitzness of the solution map for the 2 D Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1471-1490. doi: 10.3934/dcds.2010.26.1471 |
[6] |
Julia García-Luengo, Pedro Marín-Rubio, José Real. Regularity of pullback attractors and attraction in $H^1$ in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 181-201. doi: 10.3934/dcds.2014.34.181 |
[7] |
Vladimir V. Chepyzhov, E. S. Titi, Mark I. Vishik. On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 481-500. doi: 10.3934/dcds.2007.17.481 |
[8] |
Mustapha Yebdri. Existence of $ \mathcal{D}- $pullback attractor for an infinite dimensional dynamical system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 167-198. doi: 10.3934/dcdsb.2021036 |
[9] |
Julia García-Luengo, Pedro Marín-Rubio, José Real, James C. Robinson. Pullback attractors for the non-autonomous 2D Navier--Stokes equations for minimally regular forcing. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 203-227. doi: 10.3934/dcds.2014.34.203 |
[10] |
Julia García-Luengo, Pedro Marín-Rubio. Pullback attractors for 2D Navier–Stokes equations with delays and the flattening property. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2127-2146. doi: 10.3934/cpaa.2020094 |
[11] |
Grzegorz Łukaszewicz. Pullback attractors and statistical solutions for 2-D Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 643-659. doi: 10.3934/dcdsb.2008.9.643 |
[12] |
J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647 |
[13] |
Yutaka Tsuzuki. Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains. Evolution Equations and Control Theory, 2014, 3 (1) : 191-206. doi: 10.3934/eect.2014.3.191 |
[14] |
Hakima Bessaih, Benedetta Ferrario. Statistical properties of stochastic 2D Navier-Stokes equations from linear models. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 2927-2947. doi: 10.3934/dcdsb.2016080 |
[15] |
Ruihong Ji, Yongfu Wang. Mass concentration phenomenon to the 2D Cauchy problem of the compressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1117-1133. doi: 10.3934/dcds.2019047 |
[16] |
Shuguang Shao, Shu Wang, Wen-Qing Xu, Bin Han. Global existence for the 2D Navier-Stokes flow in the exterior of a moving or rotating obstacle. Kinetic and Related Models, 2016, 9 (4) : 767-776. doi: 10.3934/krm.2016015 |
[17] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408 |
[18] |
Matthew Gardner, Adam Larios, Leo G. Rebholz, Duygu Vargun, Camille Zerfas. Continuous data assimilation applied to a velocity-vorticity formulation of the 2D Navier-Stokes equations. Electronic Research Archive, 2021, 29 (3) : 2223-2247. doi: 10.3934/era.2020113 |
[19] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5421-5448. doi: 10.3934/dcdsb.2020352 |
[20] |
Claude W. Bardos, Trinh T. Nguyen, Toan T. Nguyen, Edriss S. Titi. The inviscid limit for the 2D Navier-Stokes equations in bounded domains. Kinetic and Related Models, 2022, 15 (3) : 317-340. doi: 10.3934/krm.2022004 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]