-
Previous Article
The continuous matching of two stable linear systems can be unstable
- DCDS Home
- This Issue
-
Next Article
On elliptic lower dimensional tori for Gevrey-smooth Hamiltonian systems under Rüssmann's non-degeneracy condition
Clustered layers for the Schrödinger-Maxwell system on a ball
1. | Department of Mathematics, Nanjing University, Nanjing 210093, China, China |
$-\varepsilon^2\Delta v+v+\omega\phi v-
\varepsilon^{\frac{p-1}{2}} v^p=0
\quad \text{ in}\ B_1,$
$-\Delta \phi=4\pi \omega v^2
\quad \text{in}\ B_1$,
$v,\ \phi>0 \ \text{in}\ B_1
\quad \text{and}\quad v=\phi=0
\quad \text{on}\ \partial B_1$,
where $B_1$ is the unit ball in $\mathbb{R}^3,\ \omega>0$ and $\ \frac{7}{3}$<$p\leq 5$ are constants, and $\varepsilon$>$0$ is a small parameter. Using the localized energy method, we prove that for every sufficiently large integer $N$, the system has a family of radial solutions $(v_\varepsilon, \phi_\varepsilon)$ such that $v_\varepsilon$ has $N$ sharp spheres concentrating on a sphere $\{|x|=r_N\}$ as $\varepsilon\to 0$.
[1] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[2] |
Giuseppe Maria Coclite, Helge Holden. Ground states of the Schrödinger-Maxwell system with dirac mass: Existence and asymptotics. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 117-132. doi: 10.3934/dcds.2010.27.117 |
[3] |
Pascal Bégout, Jesús Ildefonso Díaz. A sharper energy method for the localization of the support to some stationary Schrödinger equations with a singular nonlinearity. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3371-3382. doi: 10.3934/dcds.2014.34.3371 |
[4] |
Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971 |
[5] |
Olivier Bourget, Matias Courdurier, Claudio Fernández. Construction of solutions for some localized nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 841-862. doi: 10.3934/dcds.2019035 |
[6] |
Xiaoping Chen, Chunlei Tang. Least energy sign-changing solutions for Schrödinger-Poisson system with critical growth. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2291-2312. doi: 10.3934/cpaa.2021077 |
[7] |
Kazuhiro Kurata, Yuki Osada. Asymptotic expansion of the ground state energy for nonlinear Schrödinger system with three wave interaction. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4239-4251. doi: 10.3934/cpaa.2021157 |
[8] |
Noboru Okazawa, Toshiyuki Suzuki, Tomomi Yokota. Energy methods for abstract nonlinear Schrödinger equations. Evolution Equations and Control Theory, 2012, 1 (2) : 337-354. doi: 10.3934/eect.2012.1.337 |
[9] |
Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic and Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040 |
[10] |
Jun Yang, Xiaolin Yang. Clustered interior phase transition layers for an inhomogeneous Allen-Cahn equation in higher dimensional domains. Communications on Pure and Applied Analysis, 2013, 12 (1) : 303-340. doi: 10.3934/cpaa.2013.12.303 |
[11] |
Nan Lu. Non-localized standing waves of the hyperbolic cubic nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3533-3567. doi: 10.3934/dcds.2015.35.3533 |
[12] |
Dachun Yang, Dongyong Yang, Yuan Zhou. Localized BMO and BLO spaces on RD-spaces and applications to Schrödinger operators. Communications on Pure and Applied Analysis, 2010, 9 (3) : 779-812. doi: 10.3934/cpaa.2010.9.779 |
[13] |
Hideo Takaoka. Energy transfer model for the derivative nonlinear Schrödinger equations on the torus. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5819-5841. doi: 10.3934/dcds.2017253 |
[14] |
Van Duong Dinh. A unified approach for energy scattering for focusing nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6441-6471. doi: 10.3934/dcds.2020286 |
[15] |
Pavlos Xanthopoulos, Georgios E. Zouraris. A linearly implicit finite difference method for a Klein-Gordon-Schrödinger system modeling electron-ion plasma waves. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 239-263. doi: 10.3934/dcdsb.2008.10.239 |
[16] |
Yohei Yamazaki. Transverse instability for a system of nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 565-588. doi: 10.3934/dcdsb.2014.19.565 |
[17] |
Hartmut Pecher. Local solutions with infinite energy of the Maxwell-Chern-Simons-Higgs system in Lorenz gauge. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2193-2204. doi: 10.3934/dcds.2016.36.2193 |
[18] |
Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-Maxwell-Kirchhoff systems with pure critical growth nonlinearity. Communications on Pure and Applied Analysis, 2021, 20 (2) : 817-834. doi: 10.3934/cpaa.2020292 |
[19] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[20] |
Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]