September  2006, 16(3): 689-703. doi: 10.3934/dcds.2006.16.689

The continuous matching of two stable linear systems can be unstable

1. 

Departamento Matemática Aplicada II, Escuela Técnica Superior de Ingenieros. Universidad de Sevilla, Camino de los Descubrimientos s/n, Sevilla 41092, Spain, Spain, Spain, Spain

Received  February 2005 Revised  August 2006 Published  August 2006

The seemingly straightforward stability issue in three-dimensional homogeneous continuous piecewise linear systems with two linear zones is considered. The only equilibrium at the origin, being in the separation plane of the linear zones, has two linearization matrices. For the important case where both matrices have complex eigenvalues with the whole spectrum in the left half plane, the possible counter-intuitive instability of the origin is proved. Some sufficient conditions for the global asymptotic stability of such systems are also shown.
Citation: V. Carmona, E. Freire, E. Ponce, F. Torres. The continuous matching of two stable linear systems can be unstable. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 689-703. doi: 10.3934/dcds.2006.16.689
[1]

Victoriano Carmona, Emilio Freire, Soledad Fernández-García. Periodic orbits and invariant cones in three-dimensional piecewise linear systems. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 59-72. doi: 10.3934/dcds.2015.35.59

[2]

Miguel Ângelo De Sousa Mendes. Quasi-invariant attractors of piecewise isometric systems. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 323-338. doi: 10.3934/dcds.2003.9.323

[3]

Christian Pötzsche, Stefan Siegmund, Fabian Wirth. A spectral characterization of exponential stability for linear time-invariant systems on time scales. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1223-1241. doi: 10.3934/dcds.2003.9.1223

[4]

Jaume Llibre, Lucyjane de A. S. Menezes. On the limit cycles of a class of discontinuous piecewise linear differential systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1835-1858. doi: 10.3934/dcdsb.2020005

[5]

Victoriano Carmona, Soledad Fernández-García, Antonio E. Teruel. Saddle-node of limit cycles in planar piecewise linear systems and applications. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5275-5299. doi: 10.3934/dcds.2019215

[6]

Song-Mei Huan, Xiao-Song Yang. On the number of limit cycles in general planar piecewise linear systems. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2147-2164. doi: 10.3934/dcds.2012.32.2147

[7]

Rafel Prohens, Antonio E. Teruel. Canard trajectories in 3D piecewise linear systems. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4595-4611. doi: 10.3934/dcds.2013.33.4595

[8]

Shimin Li, Jaume Llibre. On the limit cycles of planar discontinuous piecewise linear differential systems with a unique equilibrium. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5885-5901. doi: 10.3934/dcdsb.2019111

[9]

Rovella Alvaro, Vilamajó Francesc, Romero Neptalí. Invariant manifolds for delay endomorphisms. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 35-50. doi: 10.3934/dcds.2001.7.35

[10]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3837-3849. doi: 10.3934/dcdss.2020444

[11]

Claudio Buzzi, Claudio Pessoa, Joan Torregrosa. Piecewise linear perturbations of a linear center. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 3915-3936. doi: 10.3934/dcds.2013.33.3915

[12]

Alexander Pimenov, Dmitrii I. Rachinskii. Linear stability analysis of systems with Preisach memory. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 997-1018. doi: 10.3934/dcdsb.2009.11.997

[13]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[14]

Jaume Llibre. Limit cycles of continuous piecewise differential systems separated by a parabola and formed by a linear center and a quadratic center. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022034

[15]

Ciprian D. Coman. Dissipative effects in piecewise linear dynamics. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 163-177. doi: 10.3934/dcdsb.2003.3.163

[16]

Siniša Slijepčević. Stability of invariant measures. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1345-1363. doi: 10.3934/dcds.2009.24.1345

[17]

Byungik Kahng, Miguel Mendes. The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems. Conference Publications, 2013, 2013 (special) : 393-406. doi: 10.3934/proc.2013.2013.393

[18]

Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 353-371. doi: 10.3934/naco.2021010

[19]

José F. Alves, Davide Azevedo. Statistical properties of diffeomorphisms with weak invariant manifolds. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 1-41. doi: 10.3934/dcds.2016.36.1

[20]

George Osipenko. Indestructibility of invariant locally non-unique manifolds. Discrete and Continuous Dynamical Systems, 1996, 2 (2) : 203-219. doi: 10.3934/dcds.1996.2.203

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (113)
  • HTML views (0)
  • Cited by (31)

Other articles
by authors

[Back to Top]