-
Previous Article
Planar and screw-shaped solutions for a system of two reaction-diffusion equations on the circle
- DCDS Home
- This Issue
- Next Article
Homogenization for a nonlinear wave equation in domains with holes of small capacity
1. | Department of Mathematics - State University of Maringá, 87020-900 Maringá, PR, Brazil, Brazil |
2. | Department of Mathematics - State University of Maringá, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil |
$\partial_{t t} u_{\varepsilon} - \Delta u_{\varepsilon} + \partial_t F(u_{\varepsilon}) = 0$ in $\Omega_{\varepsilon}\times(0,+\infty),$
where $\Omega_{\varepsilon}$ is a domain containing holes with small capacity. In the context of optimal control, this semilinear hyperbolic equation was studied by Lions (1980) through a theory of ultra-weak solutions. Combining his arguments with the abstract framework proposed by Cioranescu and Murat (1982), for the homogenization of elliptic problems, a new approach is presented to solve the above nonlinear homogenization problem. In the linear case, one improves early classical results by Cionarescu, Donato, Murat and Zuazua (1991).
[1] |
Tai-Chia Lin. Vortices for the nonlinear wave equation. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 391-398. doi: 10.3934/dcds.1999.5.391 |
[2] |
Patrizia Donato, Florian Gaveau. Homogenization and correctors for the wave equation in non periodic perforated domains. Networks and Heterogeneous Media, 2008, 3 (1) : 97-124. doi: 10.3934/nhm.2008.3.97 |
[3] |
Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations and Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013 |
[4] |
Q-Heung Choi, Tacksun Jung. A nonlinear wave equation with jumping nonlinearity. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 797-802. doi: 10.3934/dcds.2000.6.797 |
[5] |
Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099 |
[6] |
Jorge A. Esquivel-Avila. Qualitative analysis of a nonlinear wave equation. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 787-804. doi: 10.3934/dcds.2004.10.787 |
[7] |
Y. Efendiev, B. Popov. On homogenization of nonlinear hyperbolic equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 295-309. doi: 10.3934/cpaa.2005.4.295 |
[8] |
Liu Rui. The explicit nonlinear wave solutions of the generalized $b$-equation. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1029-1047. doi: 10.3934/cpaa.2013.12.1029 |
[9] |
Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121 |
[10] |
Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure and Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165 |
[11] |
Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control and Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017 |
[12] |
Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223 |
[13] |
Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159 |
[14] |
Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control and Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73 |
[15] |
Ioana Ciotir, Nicolas Forcadel, Wilfredo Salazar. Homogenization of a stochastic viscous transport equation. Evolution Equations and Control Theory, 2021, 10 (2) : 353-364. doi: 10.3934/eect.2020070 |
[16] |
Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control and Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251 |
[17] |
Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure and Applied Analysis, 2005, 4 (4) : 861-869. doi: 10.3934/cpaa.2005.4.861 |
[18] |
Davit Martirosyan. Exponential mixing for the white-forced damped nonlinear wave equation. Evolution Equations and Control Theory, 2014, 3 (4) : 645-670. doi: 10.3934/eect.2014.3.645 |
[19] |
Teng Wang, Yi Wang. Nonlinear stability of planar rarefaction wave to the three-dimensional Boltzmann equation. Kinetic and Related Models, 2019, 12 (3) : 637-679. doi: 10.3934/krm.2019025 |
[20] |
Hiroshi Takeda. Large time behavior of solutions for a nonlinear damped wave equation. Communications on Pure and Applied Analysis, 2016, 15 (1) : 41-55. doi: 10.3934/cpaa.2016.15.41 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]