• Previous Article
    Relationship of the morse index and the $L^\infty$ bound of solutions for a strongly indefinite differential superlinear system
  • DCDS Home
  • This Issue
  • Next Article
    Regularity of the Navier-Stokes equation in a thin periodic domain with large data
March  2006, 16(1): 87-106. doi: 10.3934/dcds.2006.16.87

Small-data scattering for nonlinear waves with potential and initial data of critical decay


School of Mathematics, Trinity College, Dublin 2, Ireland

Received  January 2005 Revised  January 2006 Published  June 2006

We study the scattering problem for the nonlinear wave equation with potential. In the absence of the potential, one has sharp global existence results for the Cauchy problem with small initial data; those require the data to decay at a rate $k\geq k_c$, where $k_c$ is a critical decay rate that depends on the order of the nonlinearity. However, scattering results have appeared only for the supercritical case $k>k_c$. In this paper, we extend the latter results to the critical case and we also allow the presence of a short-range potential.
Citation: Paschalis Karageorgis. Small-data scattering for nonlinear waves with potential and initial data of critical decay. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 87-106. doi: 10.3934/dcds.2006.16.87

Huijiang Zhao, Qingsong Zhao. Radially symmetric stationary wave for two-dimensional Burgers equation. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2167-2185. doi: 10.3934/dcds.2020357


Chiara Corsato, Colette De Coster, Pierpaolo Omari. Radially symmetric solutions of an anisotropic mean curvature equation modeling the corneal shape. Conference Publications, 2015, 2015 (special) : 297-303. doi: 10.3934/proc.2015.0297


Julián López-Gómez. Uniqueness of radially symmetric large solutions. Conference Publications, 2007, 2007 (Special) : 677-686. doi: 10.3934/proc.2007.2007.677


Tomoyuki Miyaji, Yoshio Tsutsumi. Steady-state mode interactions of radially symmetric modes for the Lugiato-Lefever equation on a disk. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1633-1650. doi: 10.3934/cpaa.2018078


Thomas I. Vogel. Comments on radially symmetric liquid bridges with inflected profiles. Conference Publications, 2005, 2005 (Special) : 862-867. doi: 10.3934/proc.2005.2005.862


Abdelghafour Atlas. Regularity of the attractor for symmetric regularized wave equation. Communications on Pure and Applied Analysis, 2005, 4 (4) : 695-704. doi: 10.3934/cpaa.2005.4.695


Kimitoshi Tsutaya. Scattering theory for the wave equation of a Hartree type in three space dimensions. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2261-2281. doi: 10.3934/dcds.2014.34.2261


Harunori Monobe. Behavior of radially symmetric solutions for a free boundary problem related to cell motility. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 989-997. doi: 10.3934/dcdss.2015.8.989


István Balázs, Jan Bouwe van den Berg, Julien Courtois, János Dudás, Jean-Philippe Lessard, Anett Vörös-Kiss, JF Williams, Xi Yuan Yin. Computer-assisted proofs for radially symmetric solutions of PDEs. Journal of Computational Dynamics, 2018, 5 (1&2) : 61-80. doi: 10.3934/jcd.2018003


Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations and Control Theory, 2022, 11 (2) : 515-536. doi: 10.3934/eect.2021011


Martin Spitz. On the almost sure scattering for the energy-critical cubic wave equation with supercritical data. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022134


Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505


Tamara Fastovska. Long-time behaviour of a radially symmetric fluid-shell interaction system. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1315-1348. doi: 10.3934/dcds.2018054


Yukio Kan-On. Structure on the set of radially symmetric positive stationary solutions for a competition-diffusion system. Conference Publications, 2013, 2013 (special) : 427-436. doi: 10.3934/proc.2013.2013.427


Bryce Weaver. Growth rate of periodic orbits for geodesic flows over surfaces with radially symmetric focusing caps. Journal of Modern Dynamics, 2014, 8 (2) : 139-176. doi: 10.3934/jmd.2014.8.139


J. Ignacio Tello. Radially symmetric solutions for a Keller-Segel system with flux limitation and nonlinear diffusion. Discrete and Continuous Dynamical Systems - S, 2022, 15 (10) : 3003-3023. doi: 10.3934/dcdss.2022045


Kirill D. Cherednichenko, Alexander V. Kiselev, Luis O. Silva. Functional model for extensions of symmetric operators and applications to scattering theory. Networks and Heterogeneous Media, 2018, 13 (2) : 191-215. doi: 10.3934/nhm.2018009


Thierry Daudé, Damien Gobin, François Nicoleau. Local inverse scattering at fixed energy in spherically symmetric asymptotically hyperbolic manifolds. Inverse Problems and Imaging, 2016, 10 (3) : 659-688. doi: 10.3934/ipi.2016016


Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003


Tarek Saanouni. Energy scattering for the focusing fractional generalized Hartree equation. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3637-3654. doi: 10.3934/cpaa.2021124

2021 Impact Factor: 1.588


  • PDF downloads (61)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]