• Previous Article
    Positive solutions for resonant boundary value problems with the scalar p-Laplacian and nonsmooth potential
  • DCDS Home
  • This Issue
  • Next Article
    On a nonlinear Schrödinger equation modelling ultra-short laser pulses with a large noncompact global attractor
January  2007, 17(1): 133-141. doi: 10.3934/dcds.2007.17.133

Entropy dimensions and a class of constructive examples

1. 

Institut de Mathématiques de Luminy, Case 907, 163 av. de Luminy, F13288 Marseille Cedex 9, France

2. 

Department of Mathematics, Ajou University, Suwon 442-729, South Korea

Received  February 2005 Revised  June 2006 Published  October 2006

Motivated by the study of actions of $\Z^{2}$ and more general groups, and their non-cocompact subgroup actions, we investigate entropy-type invariants for deterministic systems. In particular, we define a new isomorphism invariant, the entropy dimension, and look at its behaviour on examples. We also look at other natural notions suitable for processes.
Citation: Sébastien Ferenczi, Kyewon Koh Park. Entropy dimensions and a class of constructive examples. Discrete & Continuous Dynamical Systems, 2007, 17 (1) : 133-141. doi: 10.3934/dcds.2007.17.133
[1]

Frank Blume. Realizing subexponential entropy growth rates by cutting and stacking. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3435-3459. doi: 10.3934/dcdsb.2015.20.3435

[2]

Robert F. Dell, Johannes O. Royset, Ioannis Zyngiridis. Optimizing container movements using one and two automated stacking cranes. Journal of Industrial & Management Optimization, 2009, 5 (2) : 285-302. doi: 10.3934/jimo.2009.5.285

[3]

Yi Jiang, Chuan Luo, Shenggui Ling. An efficient cutting plane algorithm for the smallest enclosing circle problem. Journal of Industrial & Management Optimization, 2017, 13 (1) : 147-153. doi: 10.3934/jimo.2016009

[4]

Christopher C. Tisdell. Reimagining multiplication as diagrammatic and dynamic concepts via cutting, pasting and rescaling actions. STEM Education, 2021, 1 (3) : 170-185. doi: 10.3934/steme.2021013

[5]

Michael Brandenbursky, Michał Marcinkowski. Entropy and quasimorphisms. Journal of Modern Dynamics, 2019, 15: 143-163. doi: 10.3934/jmd.2019017

[6]

Wenxiang Sun, Cheng Zhang. Zero entropy versus infinite entropy. Discrete & Continuous Dynamical Systems, 2011, 30 (4) : 1237-1242. doi: 10.3934/dcds.2011.30.1237

[7]

Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018

[8]

Burak Ordin. The modified cutting angle method for global minimization of increasing positively homogeneous functions over the unit simplex. Journal of Industrial & Management Optimization, 2009, 5 (4) : 825-834. doi: 10.3934/jimo.2009.5.825

[9]

Georg Vossen, Torsten Hermanns. On an optimal control problem in laser cutting with mixed finite-/infinite-dimensional constraints. Journal of Industrial & Management Optimization, 2014, 10 (2) : 503-519. doi: 10.3934/jimo.2014.10.503

[10]

Jie Shen, Jian Lv, Fang-Fang Guo, Ya-Li Gao, Rui Zhao. A new proximal chebychev center cutting plane algorithm for nonsmooth optimization and its convergence. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1143-1155. doi: 10.3934/jimo.2018003

[11]

Ruiheng Cai, Feng-kuang Chiang. A laser-cutting-centered STEM course for improving engineering problem-solving skills of high school students in China. STEM Education, 2021, 1 (3) : 199-224. doi: 10.3934/steme.2021015

[12]

José M. Amigó, Karsten Keller, Valentina A. Unakafova. On entropy, entropy-like quantities, and applications. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3301-3343. doi: 10.3934/dcdsb.2015.20.3301

[13]

Ping Huang, Ercai Chen, Chenwei Wang. Entropy formulae of conditional entropy in mean metrics. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 5129-5144. doi: 10.3934/dcds.2018226

[14]

François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete & Continuous Dynamical Systems, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275

[15]

Boris Kruglikov, Martin Rypdal. Entropy via multiplicity. Discrete & Continuous Dynamical Systems, 2006, 16 (2) : 395-410. doi: 10.3934/dcds.2006.16.395

[16]

Nicolas Bedaride. Entropy of polyhedral billiard. Discrete & Continuous Dynamical Systems, 2007, 19 (1) : 89-102. doi: 10.3934/dcds.2007.19.89

[17]

Karl Petersen, Ibrahim Salama. Entropy on regular trees. Discrete & Continuous Dynamical Systems, 2020, 40 (7) : 4453-4477. doi: 10.3934/dcds.2020186

[18]

Vladimír Špitalský. Local correlation entropy. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5711-5733. doi: 10.3934/dcds.2018249

[19]

Baolin He. Entropy of diffeomorphisms of line. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 4753-4766. doi: 10.3934/dcds.2017204

[20]

Luiza H. F. Andrade, Rui F. Vigelis, Charles C. Cavalcante. A generalized quantum relative entropy. Advances in Mathematics of Communications, 2020, 14 (3) : 413-422. doi: 10.3934/amc.2020063

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (165)
  • HTML views (0)
  • Cited by (20)

Other articles
by authors

[Back to Top]