January  2007, 17(1): 21-58. doi: 10.3934/dcds.2007.17.21

Intermittency and Jakobson's theorem near saddle-node bifurcations

1. 

KdV Institute for Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, Netherlands

2. 

Department of Mathematics, Ohio University, Athens, OH 45701

Received  January 2005 Revised  June 2006 Published  October 2006

We discuss one parameter families of unimodal maps, with negative Schwarzian derivative, unfolding a saddle-node bifurcation. We show that there is a parameter set of positive but not full Lebesgue density at the bifurcation, for which the maps exhibit absolutely continuous invariant measures which are supported on the largest possible interval. We prove that these measures converge weakly to an atomic measure supported on the orbit of the saddle-node point. Using these measures we analyze the intermittent time series that result from the destruction of the periodic attractor in the saddle-node bifurcation and prove asymptotic formulae for the frequency with which orbits visit the region previously occupied by the periodic attractor.
Citation: Ale Jan Homburg, Todd Young. Intermittency and Jakobson's theorem near saddle-node bifurcations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 21-58. doi: 10.3934/dcds.2007.17.21
[1]

Simon Lloyd, Edson Vargas. Critical covering maps without absolutely continuous invariant probability measure. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2393-2412. doi: 10.3934/dcds.2019101

[2]

Jawad Al-Khal, Henk Bruin, Michael Jakobson. New examples of S-unimodal maps with a sigma-finite absolutely continuous invariant measure. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 35-61. doi: 10.3934/dcds.2008.22.35

[3]

Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419

[4]

Ping Liu, Junping Shi, Yuwen Wang. A double saddle-node bifurcation theorem. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2923-2933. doi: 10.3934/cpaa.2013.12.2923

[5]

Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203

[6]

Kie Van Ivanky Saputra, Lennaert van Veen, Gilles Reinout Willem Quispel. The saddle-node-transcritical bifurcation in a population model with constant rate harvesting. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 233-250. doi: 10.3934/dcdsb.2010.14.233

[7]

Luis Barreira, Claudia Valls. Growth rates and nonuniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 509-528. doi: 10.3934/dcds.2008.22.509

[8]

Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123

[9]

Jiu Ding, Aihui Zhou. Absolutely continuous invariant measures for piecewise $C^2$ and expanding mappings in higher dimensions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 451-458. doi: 10.3934/dcds.2000.6.451

[10]

Yakov Pesin. On the work of Dolgopyat on partial and nonuniform hyperbolicity. Journal of Modern Dynamics, 2010, 4 (2) : 227-241. doi: 10.3934/jmd.2010.4.227

[11]

Jana Rodriguez Hertz. Genericity of nonuniform hyperbolicity in dimension 3. Journal of Modern Dynamics, 2012, 6 (1) : 121-138. doi: 10.3934/jmd.2012.6.121

[12]

Adrian Tudorascu. On absolutely continuous curves of probabilities on the line. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5105-5124. doi: 10.3934/dcds.2019207

[13]

Boris Kalinin, Anatole Katok, Federico Rodriguez Hertz. Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\Zk$ actions with Cartan homotopy data". Journal of Modern Dynamics, 2010, 4 (1) : 207-209. doi: 10.3934/jmd.2010.4.207

[14]

Luis Barreira, Claudia Valls. Regularity of center manifolds under nonuniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 55-76. doi: 10.3934/dcds.2011.30.55

[15]

Lucia D. Simonelli. Absolutely continuous spectrum for parabolic flows/maps. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 263-292. doi: 10.3934/dcds.2018013

[16]

Boris Kalinin, Anatole Katok and Federico Rodriguez Hertz. New progress in nonuniform measure and cocycle rigidity. Electronic Research Announcements, 2008, 15: 79-92. doi: 10.3934/era.2008.15.79

[17]

Giovanni Forni. A geometric criterion for the nonuniform hyperbolicity of the Kontsevich--Zorich cocycle. Journal of Modern Dynamics, 2011, 5 (2) : 355-395. doi: 10.3934/jmd.2011.5.355

[18]

W.-J. Beyn, Y.-K Zou. Discretizations of dynamical systems with a saddle-node homoclinic orbit. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 351-365. doi: 10.3934/dcds.1996.2.351

[19]

Xiao-Biao Lin, Changrong Zhu. Saddle-node bifurcations of multiple homoclinic solutions in ODES. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1435-1460. doi: 10.3934/dcdsb.2017069

[20]

Victoriano Carmona, Soledad Fernández-García, Antonio E. Teruel. Saddle-node of limit cycles in planar piecewise linear systems and applications. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5275-5299. doi: 10.3934/dcds.2019215

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]