• Previous Article
    A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$
  • DCDS Home
  • This Issue
  • Next Article
    Semicontinuity of entropy, existence of equilibrium states and continuity of physical measures
April  2007, 17(2): 387-395. doi: 10.3934/dcds.2007.17.387

Polynomial inverse integrating factors for polynomial vector fields

1. 

Departament de Matemàtiques Universitat, Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain, Spain

2. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona

Received  December 2005 Revised  September 2006 Published  November 2006

We present some results and one open question on the existence of polynomial inverse integrating factors for polynomial vector fields.
Citation: Antoni Ferragut, Jaume Llibre, Adam Mahdi. Polynomial inverse integrating factors for polynomial vector fields. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 387-395. doi: 10.3934/dcds.2007.17.387
[1]

Jon Aaronson, Michael Bromberg, Nishant Chandgotia. Rational ergodicity of step function skew products. Journal of Modern Dynamics, 2018, 13: 1-42. doi: 10.3934/jmd.2018012

[2]

Yubo Yuan, Weiguo Fan, Dongmei Pu. Spline function smooth support vector machine for classification. Journal of Industrial & Management Optimization, 2007, 3 (3) : 529-542. doi: 10.3934/jimo.2007.3.529

[3]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020117

[4]

Yuri Latushkin, Alim Sukhtayev. The Evans function and the Weyl-Titchmarsh function. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 939-970. doi: 10.3934/dcdss.2012.5.939

[5]

Antonio Algaba, Natalia Fuentes, Cristóbal García, Manuel Reyes. Non-formally integrable centers admitting an algebraic inverse integrating factor. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 967-988. doi: 10.3934/dcds.2018041

[6]

J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413

[7]

H. N. Mhaskar, T. Poggio. Function approximation by deep networks. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4085-4095. doi: 10.3934/cpaa.2020181

[8]

Hassan Emamirad, Philippe Rogeon. Semiclassical limit of Husimi function. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 669-676. doi: 10.3934/dcdss.2013.6.669

[9]

Ken Ono. Parity of the partition function. Electronic Research Announcements, 1995, 1: 35-42.

[10]

Tomasz Downarowicz, Yonatan Gutman, Dawid Huczek. Rank as a function of measure. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2741-2750. doi: 10.3934/dcds.2014.34.2741

[11]

Qiaoyi Hu, Zhijun Qiao. Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6975-7000. doi: 10.3934/dcds.2016103

[12]

Tadeusz Antczak, Najeeb Abdulaleem. Optimality conditions for $ E $-differentiable vector optimization problems with the multiple interval-valued objective function. Journal of Industrial & Management Optimization, 2019  doi: 10.3934/jimo.2019089

[13]

Tadeusz Antczak. The $ F $-objective function method for differentiable interval-valued vector optimization problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020093

[14]

Anurag Jayswala, Tadeusz Antczakb, Shalini Jha. Second order modified objective function method for twice differentiable vector optimization problems over cone constraints. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 133-145. doi: 10.3934/naco.2019010

[15]

Giovanni Colombo, Khai T. Nguyen. On the minimum time function around the origin. Mathematical Control & Related Fields, 2013, 3 (1) : 51-82. doi: 10.3934/mcrf.2013.3.51

[16]

Welington Cordeiro, Manfred Denker, Michiko Yuri. A note on specification for iterated function systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3475-3485. doi: 10.3934/dcdsb.2015.20.3475

[17]

Luc Robbiano. Counting function for interior transmission eigenvalues. Mathematical Control & Related Fields, 2016, 6 (1) : 167-183. doi: 10.3934/mcrf.2016.6.167

[18]

Todd Kapitula, Björn Sandstede. Eigenvalues and resonances using the Evans function. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 857-869. doi: 10.3934/dcds.2004.10.857

[19]

Martin D. Buhmann, Slawomir Dinew. Limits of radial basis function interpolants. Communications on Pure & Applied Analysis, 2007, 6 (3) : 569-585. doi: 10.3934/cpaa.2007.6.569

[20]

Christian Wolf. A shift map with a discontinuous entropy function. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (83)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]