August  2007, 17(3): 481-500. doi: 10.3934/dcds.2007.17.481

On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system

1. 

Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetniy 19, Moscow 127994, GSP-4, Russian Federation, Russian Federation

2. 

Department of Mathematics and Department of Mechanics and Aerospace Engineering, University of California, Irvine, CA 92697, United States

Received  January 2006 Revised  August 2006 Published  December 2006

We study the relations between the global dynamics of the 3D Leray-$\alpha $ model and the 3D Navier-Stokes system. We prove that time shifts of bounded sets of solutions of the Leray-$\alpha $ model converges to the trajectory attractor of the 3D Navier-Stokes system as time tends to infinity and $ \alpha $ approaches zero. In particular, we show that the trajectory attractor of the Leray-$\alpha $ model converges to the trajectory attractor of the 3D Navier-Stokes system when $\alpha \rightarrow 0\+.$
Citation: Vladimir V. Chepyzhov, E. S. Titi, Mark I. Vishik. On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 481-500. doi: 10.3934/dcds.2007.17.481
[1]

Aseel Farhat, M. S Jolly, Evelyn Lunasin. Bounds on energy and enstrophy for the 3D Navier-Stokes-$\alpha$ and Leray-$\alpha$ models. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2127-2140. doi: 10.3934/cpaa.2014.13.2127

[2]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[3]

Kuanysh A. Bekmaganbetov, Gregory A. Chechkin, Vladimir V. Chepyzhov, Andrey Yu. Goritsky. Homogenization of trajectory attractors of 3D Navier-Stokes system with randomly oscillating force. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2375-2393. doi: 10.3934/dcds.2017103

[4]

Milan Pokorný, Piotr B. Mucha. 3D steady compressible Navier--Stokes equations. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 151-163. doi: 10.3934/dcdss.2008.1.151

[5]

Luca Bisconti, Davide Catania. Remarks on global attractors for the 3D Navier--Stokes equations with horizontal filtering. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 59-75. doi: 10.3934/dcdsb.2015.20.59

[6]

Anne Bronzi, Ricardo Rosa. On the convergence of statistical solutions of the 3D Navier-Stokes-$\alpha$ model as $\alpha$ vanishes. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 19-49. doi: 10.3934/dcds.2014.34.19

[7]

Tomás Caraballo, Antonio M. Márquez-Durán, José Real. Pullback and forward attractors for a 3D LANS$-\alpha$ model with delay. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 559-578. doi: 10.3934/dcds.2006.15.559

[8]

T. Tachim Medjo. Averaging of a 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external forces. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1281-1305. doi: 10.3934/cpaa.2011.10.1281

[9]

T. Tachim Medjo. A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external force and its global attractor. Communications on Pure & Applied Analysis, 2011, 10 (2) : 415-433. doi: 10.3934/cpaa.2011.10.415

[10]

Gabriel Deugoue. Approximation of the trajectory attractor of the 3D MHD System. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2119-2144. doi: 10.3934/cpaa.2013.12.2119

[11]

Gaocheng Yue, Chengkui Zhong. Attractors for autonomous and nonautonomous 3D Navier-Stokes-Voight equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 985-1002. doi: 10.3934/dcdsb.2011.16.985

[12]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[13]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[14]

Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081

[15]

A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289

[16]

Chao Deng, Xiaohua Yao. Well-posedness and ill-posedness for the 3D generalized Navier-Stokes equations in $\dot{F}^{-\alpha,r}_{\frac{3}{\alpha-1}}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 437-459. doi: 10.3934/dcds.2014.34.437

[17]

Giovanny Guerrero, José Antonio Langa, Antonio Suárez. Biodiversity and vulnerability in a 3D mutualistic system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4107-4126. doi: 10.3934/dcds.2014.34.4107

[18]

Ciprian G. Gal, T. Tachim Medjo. Approximation of the trajectory attractor for a 3D model of incompressible two-phase-flows. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2229-2252. doi: 10.3934/cpaa.2014.13.2229

[19]

Xiaojing Xu, Zhuan Ye. Note on global regularity of 3D generalized magnetohydrodynamic-$\alpha$ model with zero diffusivity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 585-595. doi: 10.3934/cpaa.2015.14.585

[20]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (6)

[Back to Top]