\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Characterizing asymptotic stability with Dulac functions

Abstract / Introduction Related Papers Cited by
  • This paper studies questions regarding the local and global asymptotic stability of analytic autonomous ordinary differential equations in $\mathbb{R}^n$. It is well-known that such stability can be characterized in terms of Liapunov functions. The authors prove similar results for the more geometrically motivated Dulac functions. In particular it holds that any analytic autonomous ordinary differential equation having a critical point which is a global attractor admits a Dulac function. These results can be used to give criteria of global attraction in two-dimensional systems.
    Mathematics Subject Classification: Primary: 37C75; Secondary: 34D23, 37C10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(77) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return