January  2007, 18(1): 199-217. doi: 10.3934/dcds.2007.18.199

Random β-expansions with deleted digits

1. 

Department of Mathematics, Utrecht University, Postbus 80.000, 3508 TA Utrecht, Netherlands, Netherlands

Received  June 2006 Revised  November 2006 Published  February 2007

In this paper we define random $\beta$-expansions with digits taken from a given set of real numbers $A= \{ a_1 , \ldots , a_m \}$. We study a generalization of the greedy and lazy expansion and define a function $K$ that generates essentially all $\beta$-expansions with digits belonging to the set $A$. We show that $K$ admits an invariant measure $\nu$ under which $K$ is isomorphic to the uniform Bernoulli shift on $A$.
Citation: Karma Dajani, Charlene Kalle. Random β-expansions with deleted digits. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 199-217. doi: 10.3934/dcds.2007.18.199
[1]

Brian Marcus and Selim Tuncel. Powers of positive polynomials and codings of Markov chains onto Bernoulli shifts. Electronic Research Announcements, 1999, 5: 91-101.

[2]

Christophe Profeta, Frédéric Vrins. Piecewise constant martingales and lazy clocks. Probability, Uncertainty and Quantitative Risk, 2019, 4 (0) : 2-. doi: 10.1186/s41546-019-0036-4

[3]

Jing Qin, Shuang Li, Deanna Needell, Anna Ma, Rachel Grotheer, Chenxi Huang, Natalie Durgin. Stochastic greedy algorithms for multiple measurement vectors. Inverse Problems and Imaging, 2021, 15 (1) : 79-107. doi: 10.3934/ipi.2020066

[4]

John Banks, Thi T. D. Nguyen, Piotr Oprocha, Brett Stanley, Belinda Trotta. Dynamics of spacing shifts. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4207-4232. doi: 10.3934/dcds.2013.33.4207

[5]

John Banks, Piotr Oprocha, Brett Stanley. Transitive sofic spacing shifts. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4743-4764. doi: 10.3934/dcds.2015.35.4743

[6]

Karma Dajani, Cor Kraaikamp, Pierre Liardet. Ergodic properties of signed binary expansions. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 87-119. doi: 10.3934/dcds.2006.15.87

[7]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2873-2890. doi: 10.3934/dcds.2020389

[8]

Rainer Buckdahn, Ingo Bulla, Jin Ma. Pathwise Taylor expansions for Itô random fields. Mathematical Control and Related Fields, 2011, 1 (4) : 437-468. doi: 10.3934/mcrf.2011.1.437

[9]

Lu Han, Min Li, Dachuan Xu, Dongmei Zhang. Stochastic-Lazier-Greedy Algorithm for monotone non-submodular maximization. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2607-2614. doi: 10.3934/jimo.2020085

[10]

Philipp Gohlke, Dan Rust, Timo Spindeler. Shifts of finite type and random substitutions. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5085-5103. doi: 10.3934/dcds.2019206

[11]

Nicholas Long. Fixed point shifts of inert involutions. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297

[12]

Marcelo Sobottka. Topological quasi-group shifts. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 77-93. doi: 10.3934/dcds.2007.17.77

[13]

Bing Li, Tuomas Sahlsten, Tony Samuel. Intermediate $\beta$-shifts of finite type. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 323-344. doi: 10.3934/dcds.2016.36.323

[14]

Dominik Kwietniak. Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2451-2467. doi: 10.3934/dcds.2013.33.2451

[15]

Omri M. Sarig. Bernoulli equilibrium states for surface diffeomorphisms. Journal of Modern Dynamics, 2011, 5 (3) : 593-608. doi: 10.3934/jmd.2011.5.593

[16]

Takao Komatsu, Bijan Kumar Patel, Claudio Pita-Ruiz. Several formulas for Bernoulli numbers and polynomials. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021006

[17]

Matthew Nicol. Induced maps of hyperbolic Bernoulli systems. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 147-154. doi: 10.3934/dcds.2001.7.147

[18]

Hajnal R. Tóth. Infinite Bernoulli convolutions with different probabilities. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 595-600. doi: 10.3934/dcds.2008.21.595

[19]

Xue Lu, Niall Adams, Nikolas Kantas. On adaptive estimation for dynamic Bernoulli bandits. Foundations of Data Science, 2019, 1 (2) : 197-225. doi: 10.3934/fods.2019009

[20]

Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]