- Previous Article
- DCDS Home
- This Issue
-
Next Article
Random β-expansions with deleted digits
Erratum
1. | Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa |
2. | Dipartimento di Matematica Applicata, Università di Pisa, Via Filippo Buonarroti 1/c, 56127 Pisa, Italy |
3. | Dipartimento di Matematica - Politecnico, Piazza Leonardo Da Vinci 32, 20133, Milano |
[1] |
J. M. Mazón, Julio D. Rossi, J. Toledo. Optimal matching problems with costs given by Finsler distances. Communications on Pure and Applied Analysis, 2015, 14 (1) : 229-244. doi: 10.3934/cpaa.2015.14.229 |
[2] |
Patrick Foulon, Vladimir S. Matveev. Zermelo deformation of finsler metrics by killing vector fields. Electronic Research Announcements, 2018, 25: 1-7. doi: 10.3934/era.2018.25.001 |
[3] |
J. C. Alvarez Paiva and E. Fernandes. Crofton formulas in projective Finsler spaces. Electronic Research Announcements, 1998, 4: 91-100. |
[4] |
Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1025-1038. doi: 10.3934/cpaa.2021004 |
[5] |
Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517-526. doi: 10.3934/jgm.2015.7.517 |
[6] |
Nathan Albin, Nethali Fernando, Pietro Poggi-Corradini. Modulus metrics on networks. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 1-17. doi: 10.3934/dcdsb.2018161 |
[7] |
Nhan-Phu Chung. Gromov-Hausdorff distances for dynamical systems. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6179-6200. doi: 10.3934/dcds.2020275 |
[8] |
Giuseppe Buttazzo, Luigi De Pascale, Ilaria Fragalà. Topological equivalence of some variational problems involving distances. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 247-258. doi: 10.3934/dcds.2001.7.247 |
[9] |
Dario Corona. A multiplicity result for orthogonal geodesic chords in Finsler disks. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5329-5357. doi: 10.3934/dcds.2021079 |
[10] |
Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 2011, 3 (4) : 389-438. doi: 10.3934/jgm.2011.3.389 |
[11] |
Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space, II: Weighted Sobolev metrics and almost local metrics. Journal of Geometric Mechanics, 2012, 4 (4) : 365-383. doi: 10.3934/jgm.2012.4.365 |
[12] |
Yong Fang. Quasiconformal Anosov flows and quasisymmetric rigidity of Hamenst$\ddot{a}$dt distances. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3471-3483. doi: 10.3934/dcds.2014.34.3471 |
[13] |
Jonathan Zinsl. The gradient flow of a generalized Fisher information functional with respect to modified Wasserstein distances. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 919-933. doi: 10.3934/dcdss.2017047 |
[14] |
Alice Le Brigant. Computing distances and geodesics between manifold-valued curves in the SRV framework. Journal of Geometric Mechanics, 2017, 9 (2) : 131-156. doi: 10.3934/jgm.2017005 |
[15] |
Christine Bachoc, Gilles Zémor. Bounds for binary codes relative to pseudo-distances of $k$ points. Advances in Mathematics of Communications, 2010, 4 (4) : 547-565. doi: 10.3934/amc.2010.4.547 |
[16] |
Guojun Gan, Kun Chen. A soft subspace clustering algorithm with log-transformed distances. Big Data & Information Analytics, 2016, 1 (1) : 93-109. doi: 10.3934/bdia.2016.1.93 |
[17] |
Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110 |
[18] |
Lucas Dahinden, Álvaro del Pino. Introducing sub-Riemannian and sub-Finsler billiards. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3187-3232. doi: 10.3934/dcds.2022014 |
[19] |
S. A. Krat. On pairs of metrics invariant under a cocompact action of a group. Electronic Research Announcements, 2001, 7: 79-86. |
[20] |
Gabriel P. Paternain. On two noteworthy deformations of negatively curved Riemannian metrics. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 639-650. doi: 10.3934/dcds.1999.5.639 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]