\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition

Abstract / Introduction Related Papers Cited by
  • In this paper, we study the solution of an initial boundary value problem for a quasilinear parabolic equation with a nonlinear boundary condition. We first show that any positive solution blows up in finite time. For a monotone solution, we have either the single blow-up point on the boundary or blow-up on the whole domain, depending on the parameter range. Then, in the single blow-up point case, the existence of a unique self-similar profile is proven. Moreover, by constructing a Lyapunov function, we prove the convergence of the solution to the unique self-similar solution as $t$ approaches the blow-up time.
    Mathematics Subject Classification: Primary: 35K20, 35K55; Secondary: 34A12.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return