November  2007, 18(4): 747-772. doi: 10.3934/dcds.2007.18.747

Generation results for elliptic operators with unbounded diffusion coefficients in $L^p$- and $C_b$-spaces

1. 

Dipartimento di Matematica “Ennio De Giorgi”, Università degli Studi di Lecce, C.P. 193, I-73100 Lecce, Italy

2. 

Dipartimento di Matematica, Universitá degli Studi di Parma, Viale G. Usberti 85/A, 43100 Parma, Italy

Received  November 2006 Revised  January 2007 Published  May 2007

Let $a$ and $b$ be unbounded functions in $\mathbb R^N$ with $a$ sufficiently smooth. In this paper we prove that, under suitable growth assumptions on $a$ and $b$, the operator $Au=a\Delta u+b\cdot\nabla u$ admits realizations generating analytic semigroups in $L^p( R^N)$ for any $p\in [1,+\infty]$ and in $C_b( R^N)$. We also explicitly characterize the domain of the infinitesimal generator of such semigroups. Similar results are stated and proved when $R^N$ is replaced with a smooth exterior domain under general boundary conditions.
Citation: Simona Fornaro, Luca Lorenzi. Generation results for elliptic operators with unbounded diffusion coefficients in $L^p$- and $C_b$-spaces. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 747-772. doi: 10.3934/dcds.2007.18.747
[1]

Angela A. Albanese, Elisabetta M. Mangino. Analytic semigroups and some degenerate evolution equations defined on domains with corners. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 595-615. doi: 10.3934/dcds.2015.35.595

[2]

Giorgio Metafune, Chiara Spina, Cristian Tacelli. On a class of elliptic operators with unbounded diffusion coefficients. Evolution Equations and Control Theory, 2014, 3 (4) : 671-680. doi: 10.3934/eect.2014.3.671

[3]

Hongxia Zhang, Ying Wang. Liouville results for fully nonlinear integral elliptic equations in exterior domains. Communications on Pure and Applied Analysis, 2018, 17 (1) : 85-112. doi: 10.3934/cpaa.2018006

[4]

Giorgio Metafune, Chiara Spina. Heat Kernel estimates for some elliptic operators with unbounded diffusion coefficients. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2285-2299. doi: 10.3934/dcds.2012.32.2285

[5]

Pierpaolo Soravia. Uniqueness results for fully nonlinear degenerate elliptic equations with discontinuous coefficients. Communications on Pure and Applied Analysis, 2006, 5 (1) : 213-240. doi: 10.3934/cpaa.2006.5.213

[6]

Juhi Jang, Igor Kukavica, Linfeng Li. Mach limits in analytic spaces on exterior domains. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 3629-3659. doi: 10.3934/dcds.2022027

[7]

Luigi Greco, Gioconda Moscariello, Teresa Radice. Nondivergence elliptic equations with unbounded coefficients. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 131-143. doi: 10.3934/dcdsb.2009.11.131

[8]

Simona Fornaro, Federica Gregorio, Abdelaziz Rhandi. Elliptic operators with unbounded diffusion coefficients perturbed by inverse square potentials in $L^p$--spaces. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2357-2372. doi: 10.3934/cpaa.2016040

[9]

Sibei Yang, Dachun Yang, Wenxian Ma. Global regularity estimates for Neumann problems of elliptic operators with coefficients having a BMO anti-symmetric part in NTA domains. Communications on Pure and Applied Analysis, 2022, 21 (3) : 959-998. doi: 10.3934/cpaa.2022006

[10]

Bálint Farkas, Luca Lorenzi. On a class of hypoelliptic operators with unbounded coefficients in $R^N$. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1159-1201. doi: 10.3934/cpaa.2009.8.1159

[11]

Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713

[12]

Riccardo Molle, Donato Passaseo. On the behaviour of the solutions for a class of nonlinear elliptic problems in exterior domains. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 445-454. doi: 10.3934/dcds.1998.4.445

[13]

Satoshi Hashimoto, Mitsuharu Ôtani. Existence of nontrivial solutions for some elliptic equations with supercritical nonlinearity in exterior domains. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 323-333. doi: 10.3934/dcds.2007.19.323

[14]

João Marcos do Ó, Sebastián Lorca, Justino Sánchez, Pedro Ubilla. Positive radial solutions for some quasilinear elliptic systems in exterior domains. Communications on Pure and Applied Analysis, 2006, 5 (3) : 571-581. doi: 10.3934/cpaa.2006.5.571

[15]

Alberto Farina. Some rigidity results for minimal graphs over unbounded Euclidean domains. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2209-2214. doi: 10.3934/dcdss.2022032

[16]

Xiaotao Huang, Lihe Wang. Radial symmetry results for Bessel potential integral equations in exterior domains and in annular domains. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1121-1134. doi: 10.3934/cpaa.2017054

[17]

Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363

[18]

Gabriella Zecca. An optimal control problem for some nonlinear elliptic equations with unbounded coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1393-1409. doi: 10.3934/dcdsb.2019021

[19]

Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2105-2133. doi: 10.3934/dcds.2014.34.2105

[20]

Jeremy LeCrone, Gieri Simonett. Continuous maximal regularity and analytic semigroups. Conference Publications, 2011, 2011 (Special) : 963-970. doi: 10.3934/proc.2011.2011.963

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (399)
  • HTML views (0)
  • Cited by (22)

Other articles
by authors

[Back to Top]