• Previous Article
    Existence, uniqueness, and stability of periodic solutions of an equation of duffing type
  • DCDS Home
  • This Issue
  • Next Article
    Generation results for elliptic operators with unbounded diffusion coefficients in $L^p$- and $C_b$-spaces
November  2007, 18(4): 773-791. doi: 10.3934/dcds.2007.18.773

Exponential stability of a state-dependent delay system

1. 

Department of Mathematics and Computing, University of Pannonia, H-8201 Veszprém, P.O.Box 158, Hungary, Hungary

Received  May 2006 Revised  February 2007 Published  May 2007

In this paper we study exponential stability of the trivial solution of the state-dependent delay system $\dot x(t)=\sum_{i=1}^m A_{i}(t)x(t-\tau_{i}(t,x_t))$. We show that under mild assumptions, the trivial solution of the state-dependent system is exponentially stable if and only if the trivial solution of the corresponding linear time-dependent delay system $\dot y(t)=\sum_{i=1}^m A_{i}(t)y(t-\tau_{i}(t, 0))$ is exponentially stable. We also compare the order of the exponential stability of the nonlinear equation to that of its linearized equation. We show that in some cases, the two orders are equal. As an application of our main result, we formulate a necessary and sufficient condition for the exponential stability of the trivial solution of a threshold-type delay system.
Citation: István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773
[1]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[2]

Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445

[3]

Qingwen Hu. A model of regulatory dynamics with threshold-type state-dependent delay. Mathematical Biosciences & Engineering, 2018, 15 (4) : 863-882. doi: 10.3934/mbe.2018039

[4]

Benjamin B. Kennedy. Multiple periodic solutions of state-dependent threshold delay equations. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1801-1833. doi: 10.3934/dcds.2012.32.1801

[5]

Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219

[6]

Alexander Rezounenko. Stability of a viral infection model with state-dependent delay, CTL and antibody immune responses. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1547-1563. doi: 10.3934/dcdsb.2017074

[7]

Alexander Rezounenko. Viral infection model with diffusion and state-dependent delay: Stability of classical solutions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1091-1105. doi: 10.3934/dcdsb.2018143

[8]

Aowen Kong, Carlos Nonato, Wenjun Liu, Manoel Dos Santos, Carlos Raposo, Yanning An. Exponential stability for magnetic effected piezoelectric beams with time-varying delay and time-dependent weights. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022165

[9]

Hans-Otto Walther. On Poisson's state-dependent delay. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 365-379. doi: 10.3934/dcds.2013.33.365

[10]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[11]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[12]

Linfang Liu, Tomás Caraballo, Xianlong Fu. Exponential stability of an incompressible non-Newtonian fluid with delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4285-4303. doi: 10.3934/dcdsb.2018138

[13]

Xiang Xie, Honglei Xu, Xinming Cheng, Yilun Yu. Improved results on exponential stability of discrete-time switched delay systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 199-208. doi: 10.3934/dcdsb.2017010

[14]

Igor Chueshov, Peter E. Kloeden, Meihua Yang. Long term dynamics of second order-in-time stochastic evolution equations with state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 991-1009. doi: 10.3934/dcdsb.2018139

[15]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations and Control Theory, 2022, 11 (1) : 67-93. doi: 10.3934/eect.2020103

[16]

Shangzhi Li, Shangjiang Guo. Dynamics of a stage-structured population model with a state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3523-3551. doi: 10.3934/dcdsb.2020071

[17]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[18]

Tibor Krisztin. A local unstable manifold for differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 993-1028. doi: 10.3934/dcds.2003.9.993

[19]

Qingwen Hu, Bernhard Lani-Wayda, Eugen Stumpf. Preface: Delay differential equations with state-dependent delays and their applications. Discrete and Continuous Dynamical Systems - S, 2020, 13 (1) : i-i. doi: 10.3934/dcdss.20201i

[20]

Ismael Maroto, Carmen NÚÑez, Rafael Obaya. Dynamical properties of nonautonomous functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3939-3961. doi: 10.3934/dcds.2017167

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (176)
  • HTML views (0)
  • Cited by (24)

Other articles
by authors

[Back to Top]