January  2007, 18(1): 85-106. doi: 10.3934/dcds.2007.18.85

Structure theorems for linear and non-linear differential operators admitting invariant polynomial subspaces

1. 

Departamento de Física Teórica II, Universidad Complutense, 28040 Madrid, Spain

2. 

Department of Mathematics and Statistics, McGill University, Montreal, QC, H3A 2K6, Canada

3. 

Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, B3H 3J5, Canada

Received  May 2006 Revised  January 2007 Published  February 2007

In this paper we derive structure theorems which characterize the spaces of linear and non-linear differential operators that preserve finite dimensional subspaces generated by polynomials in one or several variables. By means of the useful concept of deficiency, we can write an explicit basis for these spaces of differential operators. In the case of linear operators, these results apply to the theory of quasi-exact solvability in quantum mechanics, especially in the multivariate case where the Lie algebraic approach is harder to apply. In the case of non-linear operators, the structure theorems in this paper can be applied to the method of finding special solutions of non-linear evolution equations by nonlinear separation of variables.
Citation: David Gómez-Ullate, Niky Kamran, Robert Milson. Structure theorems for linear and non-linear differential operators admitting invariant polynomial subspaces. Discrete & Continuous Dynamical Systems, 2007, 18 (1) : 85-106. doi: 10.3934/dcds.2007.18.85
[1]

Kurt Falk, Marc Kesseböhmer, Tobias Henrik Oertel-Jäger, Jens D. M. Rademacher, Tony Samuel. Preface: Diffusion on fractals and non-linear dynamics. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : i-iv. doi: 10.3934/dcdss.201702i

[2]

Dmitry Dolgopyat. Bouncing balls in non-linear potentials. Discrete & Continuous Dynamical Systems, 2008, 22 (1&2) : 165-182. doi: 10.3934/dcds.2008.22.165

[3]

Dorin Ervin Dutkay and Palle E. T. Jorgensen. Wavelet constructions in non-linear dynamics. Electronic Research Announcements, 2005, 11: 21-33.

[4]

Armin Lechleiter. Explicit characterization of the support of non-linear inclusions. Inverse Problems & Imaging, 2011, 5 (3) : 675-694. doi: 10.3934/ipi.2011.5.675

[5]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[6]

Feng-Yu Wang. Exponential convergence of non-linear monotone SPDEs. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5239-5253. doi: 10.3934/dcds.2015.35.5239

[7]

Ahmad El Hajj, Aya Oussaily. Continuous solution for a non-linear eikonal system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021131

[8]

Byungik Kahng, Miguel Mendes. The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems. Conference Publications, 2013, 2013 (special) : 393-406. doi: 10.3934/proc.2013.2013.393

[9]

Tommi Brander, Joonas Ilmavirta, Manas Kar. Superconductive and insulating inclusions for linear and non-linear conductivity equations. Inverse Problems & Imaging, 2018, 12 (1) : 91-123. doi: 10.3934/ipi.2018004

[10]

Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete & Continuous Dynamical Systems, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517

[11]

Jacques Demongeot, Dan Istrate, Hajer Khlaifi, Lucile Mégret, Carla Taramasco, René Thomas. From conservative to dissipative non-linear differential systems. An application to the cardio-respiratory regulation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (8) : 2121-2134. doi: 10.3934/dcdss.2020181

[12]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

[13]

Pablo Ochoa. Approximation schemes for non-linear second order equations on the Heisenberg group. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1841-1863. doi: 10.3934/cpaa.2015.14.1841

[14]

Eugenio Aulisa, Akif Ibragimov, Emine Yasemen Kaya-Cekin. Stability analysis of non-linear plates coupled with Darcy flows. Evolution Equations & Control Theory, 2013, 2 (2) : 193-232. doi: 10.3934/eect.2013.2.193

[15]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[16]

Olusola Kolebaje, Ebenezer Bonyah, Lateef Mustapha. The first integral method for two fractional non-linear biological models. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 487-502. doi: 10.3934/dcdss.2019032

[17]

Tarek Saanouni. Non-linear bi-harmonic Choquard equations. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5033-5057. doi: 10.3934/cpaa.2020221

[18]

Hamza Khalfi, Amal Aarab, Nour Eddine Alaa. Energetics and coarsening analysis of a simplified non-linear surface growth model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021014

[19]

Faustino Sánchez-Garduño, Philip K. Maini, Judith Pérez-Velázquez. A non-linear degenerate equation for direct aggregation and traveling wave dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 455-487. doi: 10.3934/dcdsb.2010.13.455

[20]

T. Gilbert, J. R. Dorfman. On the parametric dependences of a class of non-linear singular maps. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 391-406. doi: 10.3934/dcdsb.2004.4.391

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (111)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]