
Previous Article
Global wellposedness for a periodic nonlinear Schrödinger equation in 1D and 2D
 DCDS Home
 This Issue
 Next Article
Finitetime blowdown in the evolution of point masses by planar logarithmic diffusion
1.  Departamento de Matemáticas and ICMAT. Universidad Autónoma de Madrid, Cantoblanco. 28049 Madrid, Spain 
[1] 
Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 00. doi: 10.3934/naco.2020021 
[2] 
Nejib Mahmoudi. Singlepoint blowup for a multicomponent reactiondiffusion system. Discrete & Continuous Dynamical Systems  A, 2018, 38 (1) : 209230. doi: 10.3934/dcds.2018010 
[3] 
Michael Herty, Axel Klar, Sébastien Motsch, Ferdinand Olawsky. A smooth model for fiber laydown processes and its diffusion approximations. Kinetic & Related Models, 2009, 2 (3) : 489502. doi: 10.3934/krm.2009.2.489 
[4] 
Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blowup solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems  A, 2016, 36 (4) : 18811903. doi: 10.3934/dcds.2016.36.1881 
[5] 
Hua Chen, Huiyang Xu. Global existence and blowup of solutions for infinitely degenerate semilinear pseudoparabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems  A, 2019, 39 (2) : 11851203. doi: 10.3934/dcds.2019051 
[6] 
Xiumei Deng, Jun Zhou. Global existence and blowup of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (2) : 923939. doi: 10.3934/cpaa.2020042 
[7] 
Gongwei Liu. The existence, general decay and blowup for a plate equation with nonlinear damping and a logarithmic source term. Electronic Research Archive, 2020, 28 (1) : 263289. doi: 10.3934/era.2020016 
[8] 
Jaeyoung Byeon, Sungwon Cho, Junsang Park. On the location of a peak point of a least energy solution for Hénon equation. Discrete & Continuous Dynamical Systems  A, 2011, 30 (4) : 10551081. doi: 10.3934/dcds.2011.30.1055 
[9] 
Simona Fornaro, Stefano Lisini, Giuseppe Savaré, Giuseppe Toscani. Measure valued solutions of sublinear diffusion equations with a drift term. Discrete & Continuous Dynamical Systems  A, 2012, 32 (5) : 16751707. doi: 10.3934/dcds.2012.32.1675 
[10] 
Fang Li, Kimie Nakashima, WeiMing Ni. Stability from the point of view of diffusion, relaxation and spatial inhomogeneity. Discrete & Continuous Dynamical Systems  A, 2008, 20 (2) : 259274. doi: 10.3934/dcds.2008.20.259 
[11] 
Monica Marras, Stella Vernier Piro. Blowup phenomena in reactiondiffusion systems. Discrete & Continuous Dynamical Systems  A, 2012, 32 (11) : 40014014. doi: 10.3934/dcds.2012.32.4001 
[12] 
Hongwei Chen. Blowup estimates of positive solutions of a reactiondiffusion system. Conference Publications, 2003, 2003 (Special) : 182188. doi: 10.3934/proc.2003.2003.182 
[13] 
Jiao Chen, Weike Wang. The pointwise estimates for the solution of damped wave equation with nonlinear convection in multidimensional space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 307330. doi: 10.3934/cpaa.2014.13.307 
[14] 
Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$concentration of the blowup solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119127. doi: 10.3934/mcrf.2011.1.119 
[15] 
Shota Sato. Blowup at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 12251237. doi: 10.3934/cpaa.2011.10.1225 
[16] 
Tetsuya Ishiwata, Shigetoshi Yazaki. A fast blowup solution and degenerate pinching arising in an anisotropic crystalline motion. Discrete & Continuous Dynamical Systems  A, 2014, 34 (5) : 20692090. doi: 10.3934/dcds.2014.34.2069 
[17] 
Frédéric Abergel, JeanMichel Rakotoson. Gradient blowup in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete & Continuous Dynamical Systems  A, 2013, 33 (5) : 18091818. doi: 10.3934/dcds.2013.33.1809 
[18] 
ShinIchiro Ei, Toshio Ishimoto. Effect of boundary conditions on the dynamics of a pulse solution for reactiondiffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 191209. doi: 10.3934/nhm.2013.8.191 
[19] 
Manh Hong Duong, Hoang Minh Tran. On the fundamental solution and a variational formulation for a degenerate diffusion of Kolmogorov type. Discrete & Continuous Dynamical Systems  A, 2018, 38 (7) : 34073438. doi: 10.3934/dcds.2018146 
[20] 
G. Bellettini, Giorgio Fusco, Nicola Guglielmi. A concept of solution and numerical experiments for forwardbackward diffusion equations. Discrete & Continuous Dynamical Systems  A, 2006, 16 (4) : 783842. doi: 10.3934/dcds.2006.16.783 
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]