
Previous Article
New maximum principles for fully nonlinear ODEs of second order
 DCDS Home
 This Issue

Next Article
The geometry of mesoscopic phase transition interfaces
Rates of convergence towards the boundary of a selfsimilar set
1.  Department of Mathematics, University of St. Andrews, St. Andrews, Fife KY16 9SS, United Kingdom 
[1] 
Krzysztof Barański. Hausdorff dimension of selfaffine limit sets with an invariant direction. Discrete & Continuous Dynamical Systems  A, 2008, 21 (4) : 10151023. doi: 10.3934/dcds.2008.21.1015 
[2] 
Weronika Biedrzycka, Marta TyranKamińska. Selfsimilar solutions of fragmentation equations revisited. Discrete & Continuous Dynamical Systems  B, 2018, 23 (1) : 1327. doi: 10.3934/dcdsb.2018002 
[3] 
Marco Cannone, Grzegorz Karch. On selfsimilar solutions to the homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 801808. doi: 10.3934/krm.2013.6.801 
[4] 
Rostislav Grigorchuk, Volodymyr Nekrashevych. Selfsimilar groups, operator algebras and Schur complement. Journal of Modern Dynamics, 2007, 1 (3) : 323370. doi: 10.3934/jmd.2007.1.323 
[5] 
Christoph Bandt, Helena PeÑa. Polynomial approximation of selfsimilar measures and the spectrum of the transfer operator. Discrete & Continuous Dynamical Systems  A, 2017, 37 (9) : 46114623. doi: 10.3934/dcds.2017198 
[6] 
Anna Chiara Lai, Paola Loreti. Selfsimilar control systems and applications to zygodactyl bird's foot. Networks & Heterogeneous Media, 2015, 10 (2) : 401419. doi: 10.3934/nhm.2015.10.401 
[7] 
Kin Ming Hui. Existence of selfsimilar solutions of the inverse mean curvature flow. Discrete & Continuous Dynamical Systems  A, 2019, 39 (2) : 863880. doi: 10.3934/dcds.2019036 
[8] 
D. G. Aronson. Selfsimilar focusing in porous media: An explicit calculation. Discrete & Continuous Dynamical Systems  B, 2012, 17 (6) : 16851691. doi: 10.3934/dcdsb.2012.17.1685 
[9] 
G. A. Braga, Frederico Furtado, Vincenzo Isaia. Renormalization group calculation of asymptotically selfsimilar dynamics. Conference Publications, 2005, 2005 (Special) : 131141. doi: 10.3934/proc.2005.2005.131 
[10] 
Qiaolin He. Numerical simulation and selfsimilar analysis of singular solutions of Prandtl equations. Discrete & Continuous Dynamical Systems  B, 2010, 13 (1) : 101116. doi: 10.3934/dcdsb.2010.13.101 
[11] 
Shota Sato, Eiji Yanagida. Singular backward selfsimilar solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems  S, 2011, 4 (4) : 897906. doi: 10.3934/dcdss.2011.4.897 
[12] 
Bendong Lou. Selfsimilar solutions in a sector for a quasilinear parabolic equation. Networks & Heterogeneous Media, 2012, 7 (4) : 857879. doi: 10.3934/nhm.2012.7.857 
[13] 
F. Berezovskaya, G. Karev. Bifurcations of selfsimilar solutions of the FokkerPlank equations. Conference Publications, 2005, 2005 (Special) : 9199. doi: 10.3934/proc.2005.2005.91 
[14] 
Alberto Bressan, Wen Shen. A posteriori error estimates for selfsimilar solutions to the Euler equations. Discrete & Continuous Dynamical Systems  A, 2020 doi: 10.3934/dcds.2020168 
[15] 
Shota Sato, Eiji Yanagida. Forward selfsimilar solution with a moving singularity for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems  A, 2010, 26 (1) : 313331. doi: 10.3934/dcds.2010.26.313 
[16] 
Marek Fila, Michael Winkler, Eiji Yanagida. Convergence to selfsimilar solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems  A, 2008, 21 (3) : 703716. doi: 10.3934/dcds.2008.21.703 
[17] 
Hyungjin Huh. Selfsimilar solutions to nonlinear Dirac equations and an application to nonuniqueness. Evolution Equations & Control Theory, 2018, 7 (1) : 5360. doi: 10.3934/eect.2018003 
[18] 
Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114118. 
[19] 
Krzysztof Barański, Michał Wardal. On the Hausdorff dimension of the Sierpiński Julia sets. Discrete & Continuous Dynamical Systems  A, 2015, 35 (8) : 32933313. doi: 10.3934/dcds.2015.35.3293 
[20] 
Manuel FernándezMartínez, Miguel Ángel López Guerrero. Generating prefractals to approach real IFSattractors with a fixed Hausdorff dimension. Discrete & Continuous Dynamical Systems  S, 2015, 8 (6) : 11291137. doi: 10.3934/dcdss.2015.8.1129 
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]