May  2008, 20(2): 275-311. doi: 10.3934/dcds.2008.20.275

Entropy sets, weakly mixing sets and entropy capacity

1. 

LAMA (CNRS and Université Paris-Est), 5 boulevard Descartes, 77454 Marne-la-Vallée cedex 2, France

2. 

Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China

Received  August 2006 Revised  May 2007 Published  November 2007

Entropy sets are defined both topologically and for a measure. The set of topological entropy sets is the union of the sets of entropy sets for all invariant measures. For a topological system $(X,T)$ and an invariant measure $\mu$ on $(X,T)$, let $H(X,T)$ (resp. $H^\mu(X,T)$) be the closure of the set of all entropy sets (resp. $\mu$- entropy sets) in the hyperspace $2^X$. It is shown that if $h_{\text{top}}(T)>0$ (resp. $h_\mu(T)>0$), the subsystem $(H(X,T),\hat{T})$ (resp. $(H^\mu(X,T),\hat{T}))$ of $(2^X,\hat{T})$ has an invariant measure with full support and infinite topological entropy.
    Weakly mixing sets and partial mixing of dynamical systems are introduced and characterized. It is proved that if $h_{\text{top}}(T)>0$ (resp. $h_\mu(T)>0$) the set of all weakly mixing entropy sets (resp. $\mu$-entropy sets) is a dense $G_\delta$ in $H(X,T)$ (resp. $H^\mu(X,T)$). A Devaney chaotic but not partly mixing system is constructed.
     Concerning entropy capacities, it is shown that when $\mu$ is ergodic with $h_\mu(T)>0$, the set of all weakly mixing $\mu$-entropy sets $E$ such that the Bowen entropy $h(E)\ge h_\mu(T)$ is residual in $H^\mu(X,T)$. When in addition $(X,T)$ is uniquely ergodic the set of all weakly mixing entropy sets $E$ with $h(E)=h_{\text{top}}(T)$ is residual in $H(X,T)$.
Citation: François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275
[1]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[2]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[3]

Eleonora Catsigeras, Xueting Tian. Dominated splitting, partial hyperbolicity and positive entropy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4739-4759. doi: 10.3934/dcds.2016006

[4]

Michael Brandenbursky, Michał Marcinkowski. Entropy and quasimorphisms. Journal of Modern Dynamics, 2019, 15: 143-163. doi: 10.3934/jmd.2019017

[5]

Wenxiang Sun, Cheng Zhang. Zero entropy versus infinite entropy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1237-1242. doi: 10.3934/dcds.2011.30.1237

[6]

Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018

[7]

José M. Amigó, Karsten Keller, Valentina A. Unakafova. On entropy, entropy-like quantities, and applications. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3301-3343. doi: 10.3934/dcdsb.2015.20.3301

[8]

Ping Huang, Ercai Chen, Chenwei Wang. Entropy formulae of conditional entropy in mean metrics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5129-5144. doi: 10.3934/dcds.2018226

[9]

Rui Kuang, Xiangdong Ye. The return times set and mixing for measure preserving transformations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 817-827. doi: 10.3934/dcds.2007.18.817

[10]

Boris Kruglikov, Martin Rypdal. Entropy via multiplicity. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 395-410. doi: 10.3934/dcds.2006.16.395

[11]

Nicolas Bedaride. Entropy of polyhedral billiard. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 89-102. doi: 10.3934/dcds.2007.19.89

[12]

Baolin He. Entropy of diffeomorphisms of line. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4753-4766. doi: 10.3934/dcds.2017204

[13]

Lluís Alsedà, David Juher, Deborah M. King, Francesc Mañosas. Maximizing entropy of cycles on trees. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3237-3276. doi: 10.3934/dcds.2013.33.3237

[14]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

[15]

Benjamin Weiss. Entropy and actions of sofic groups. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3375-3383. doi: 10.3934/dcdsb.2015.20.3375

[16]

Eric A. Carlen, Maria C. Carvalho, Jonathan Le Roux, Michael Loss, Cédric Villani. Entropy and chaos in the Kac model. Kinetic & Related Models, 2010, 3 (1) : 85-122. doi: 10.3934/krm.2010.3.85

[17]

Jaume Llibre. Brief survey on the topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363

[18]

Laura Luzzi, Stefano Marmi. On the entropy of Japanese continued fractions. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 673-711. doi: 10.3934/dcds.2008.20.673

[19]

François Ledrappier, Seonhee Lim. Volume entropy of hyperbolic buildings. Journal of Modern Dynamics, 2010, 4 (1) : 139-165. doi: 10.3934/jmd.2010.4.139

[20]

Milton Ko. Rényi entropy and recurrence. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2403-2421. doi: 10.3934/dcds.2013.33.2403

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]