May  2008, 20(2): 335-405. doi: 10.3934/dcds.2008.20.335

Density of hyperbolicity and homoclinic bifurcations for attracting topologically hyperbolic sets

1. 

IMPA, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, Brazil

Received  June 2006 Revised  July 2007 Published  November 2007

Given a topologically hyperbolic attracting set of a smooth three dimensional Kupka-Smale diffeomorphism, it is proved under some dissipation hypothesis, that either the set is hyperbolic or the diffeomorphism is $C^1-$approximated by another one exhibiting either a heterodimensional cycle or a homoclinic tangency.
Citation: Enrique R. Pujals. Density of hyperbolicity and homoclinic bifurcations for attracting topologically hyperbolic sets. Discrete & Continuous Dynamical Systems, 2008, 20 (2) : 335-405. doi: 10.3934/dcds.2008.20.335
[1]

Xufeng Guo, Gang Liao, Wenxiang Sun, Dawei Yang. On the hybrid control of metric entropy for dominated splittings. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 5011-5019. doi: 10.3934/dcds.2018219

[2]

Zeya Mi. SRB measures for some diffeomorphisms with dominated splittings as zero noise limits. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6441-6465. doi: 10.3934/dcds.2019279

[3]

Shaobo Gan, Kazuhiro Sakai, Lan Wen. $C^1$ -stably weakly shadowing homoclinic classes admit dominated splittings. Discrete & Continuous Dynamical Systems, 2010, 27 (1) : 205-216. doi: 10.3934/dcds.2010.27.205

[4]

Snir Ben Ovadia. Symbolic dynamics for non-uniformly hyperbolic diffeomorphisms of compact smooth manifolds. Journal of Modern Dynamics, 2018, 13: 43-113. doi: 10.3934/jmd.2018013

[5]

Serafin Bautista, Carlos A. Morales. On the intersection of sectional-hyperbolic sets. Journal of Modern Dynamics, 2015, 9: 203-218. doi: 10.3934/jmd.2015.9.203

[6]

Boris Kalinin, Victoria Sadovskaya. Lyapunov exponents of cocycles over non-uniformly hyperbolic systems. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 5105-5118. doi: 10.3934/dcds.2018224

[7]

Suzete Maria Afonso, Vanessa Ramos, Jaqueline Siqueira. Equilibrium states for non-uniformly hyperbolic systems: Statistical properties and analyticity. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4485-4513. doi: 10.3934/dcds.2021045

[8]

Roberto Triggiani. Sharp regularity of hyperbolic-dominated thermoelastic systems with point control: the clamped case. Conference Publications, 2007, 2007 (Special) : 993-1004. doi: 10.3934/proc.2007.2007.993

[9]

S. Bautista, C. Morales, M. J. Pacifico. On the intersection of homoclinic classes on singular-hyperbolic sets. Discrete & Continuous Dynamical Systems, 2007, 19 (4) : 761-775. doi: 10.3934/dcds.2007.19.761

[10]

Nicolai T. A. Haydn, Kasia Wasilewska. Limiting distribution and error terms for the number of visits to balls in non-uniformly hyperbolic dynamical systems. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2585-2611. doi: 10.3934/dcds.2016.36.2585

[11]

Sébastien Guisset. Angular moments models for rarefied gas dynamics. Numerical comparisons with kinetic and Navier-Stokes equations. Kinetic & Related Models, 2020, 13 (4) : 739-758. doi: 10.3934/krm.2020025

[12]

Jingyu Li, Chuangchuang Liang. Viscosity dominated limit of global solutions to a hyperbolic equation in MEMS. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 833-849. doi: 10.3934/dcds.2016.36.833

[13]

F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Tahzibi and R. Ures. A criterion for ergodicity for non-uniformly hyperbolic diffeomorphisms. Electronic Research Announcements, 2007, 14: 74-81. doi: 10.3934/era.2007.14.74

[14]

Mohammadreza Molaei. Hyperbolic dynamics of discrete dynamical systems on pseudo-riemannian manifolds. Electronic Research Announcements, 2018, 25: 8-15. doi: 10.3934/era.2018.25.002

[15]

Hiroki Sumi. Dynamics of postcritically bounded polynomial semigroups I: Connected components of the Julia sets. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 1205-1244. doi: 10.3934/dcds.2011.29.1205

[16]

Hicham Zmarrou, Ale Jan Homburg. Dynamics and bifurcations of random circle diffeomorphism. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 719-731. doi: 10.3934/dcdsb.2008.10.719

[17]

Doris Bohnet. Codimension-1 partially hyperbolic diffeomorphisms with a uniformly compact center foliation. Journal of Modern Dynamics, 2013, 7 (4) : 565-604. doi: 10.3934/jmd.2013.7.565

[18]

Carlos Matheus, Jacob Palis. An estimate on the Hausdorff dimension of stable sets of non-uniformly hyperbolic horseshoes. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 431-448. doi: 10.3934/dcds.2018020

[19]

Philippe Jouan, Said Naciri. Asymptotic stability of uniformly bounded nonlinear switched systems. Mathematical Control & Related Fields, 2013, 3 (3) : 323-345. doi: 10.3934/mcrf.2013.3.323

[20]

Jian-Hua Zheng. Dynamics of hyperbolic meromorphic functions. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 2273-2298. doi: 10.3934/dcds.2015.35.2273

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]