-
Previous Article
Weak-convergence methods for Hamiltonian multiscale problems
- DCDS Home
- This Issue
-
Next Article
Impulsive control of Lagrangian systems and locomotion in fluids
Carrying simplices in discrete competitive systems and age-structured semelparous populations
1. | Department of Mathematics, University of Utrecht, P.O. Box 80010, 3580 TA Utrecht, Netherlands |
2. | Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, China |
3. | Department of Mathematics and Statistics, University of Helsinki, FIN-00014 Helsinki, Finland |
[1] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. Permanence and universal classification of discrete-time competitive systems via the carrying simplex. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1621-1663. doi: 10.3934/dcds.2020088 |
[2] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
[3] |
Kokum R. De Silva, Tuoc V. Phan, Suzanne Lenhart. Advection control in parabolic PDE systems for competitive populations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 1049-1072. doi: 10.3934/dcdsb.2017052 |
[4] |
Stephen Baigent. Convex geometry of the carrying simplex for the May-Leonard map. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1697-1723. doi: 10.3934/dcdsb.2018288 |
[5] |
Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2161-2172. doi: 10.3934/dcdsb.2021014 |
[6] |
M. R. S. Kulenović, Orlando Merino. Global bifurcation for discrete competitive systems in the plane. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 133-149. doi: 10.3934/dcdsb.2009.12.133 |
[7] |
P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1 |
[8] |
Thuc Manh Le, Nguyen Van Minh. Monotone traveling waves in a general discrete model for populations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3221-3234. doi: 10.3934/dcdsb.2017171 |
[9] |
Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020 |
[10] |
M. R. S. Kulenović, Orlando Merino. Competitive-exclusion versus competitive-coexistence for systems in the plane. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1141-1156. doi: 10.3934/dcdsb.2006.6.1141 |
[11] |
Jacques Demongeot, Dan Istrate, Hajer Khlaifi, Lucile Mégret, Carla Taramasco, René Thomas. From conservative to dissipative non-linear differential systems. An application to the cardio-respiratory regulation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2121-2134. doi: 10.3934/dcdss.2020181 |
[12] |
Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785 |
[13] |
Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i |
[14] |
Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116 |
[15] |
Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure and Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017 |
[16] |
Eduardo Liz. A new flexible discrete-time model for stable populations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2487-2498. doi: 10.3934/dcdsb.2018066 |
[17] |
James Sandefur. A unifying approach to discrete single-species populations models. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 493-508. doi: 10.3934/dcdsb.2017194 |
[18] |
Horst R. Thieme. Discrete-time dynamics of structured populations via Feller kernels. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1091-1119. doi: 10.3934/dcdsb.2021082 |
[19] |
J. M. Cushing. Nonlinear semelparous Leslie models. Mathematical Biosciences & Engineering, 2006, 3 (1) : 17-36. doi: 10.3934/mbe.2006.3.17 |
[20] |
H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]