July  2008, 20(3): 659-672. doi: 10.3934/dcds.2008.20.659

The complete classification on a model of two species competition with an inhibitor

1. 

Department of Mathematics, Tongji University, Shanghai 200092, China

2. 

Department of Mathematics, University of Science and Technology of China, Hefei 23002, China

Received  October 2006 Revised  November 2007 Published  December 2007

Hetzer and Shen [3] considered a system of a two-species Lotka-Volterra competition model with an inhibitor, investigated its long-term behavior and proposed two open questions: one is whether the system has a nontrivial periodic solution; the other is whether one of two positive equilibria is non-hyperbolic in the case that the system has exactly two positive equilibria. The goal of this paper is first to give these questions clear answers, then to present a complete classification for its dynamics in terms of coefficients. As a result, all solutions are convergent as $t$ goes to infinity.
Citation: Jifa Jiang, Fensidi Tang. The complete classification on a model of two species competition with an inhibitor. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 659-672. doi: 10.3934/dcds.2008.20.659
[1]

Chiun-Chuan Chen, Yin-Liang Huang, Li-Chang Hung, Chang-Hong Wu. Semi-exact solutions and pulsating fronts for Lotka-Volterra systems of two competing species in spatially periodic habitats. Communications on Pure & Applied Analysis, 2020, 19 (1) : 1-18. doi: 10.3934/cpaa.2020001

[2]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[3]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[4]

Chiun-Chuan Chen, Li-Chang Hung. Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive Lotka-Volterra systems of three competing species. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1451-1469. doi: 10.3934/cpaa.2016.15.1451

[5]

Li-Jun Du, Wan-Tong Li, Jia-Bing Wang. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1187-1213. doi: 10.3934/mbe.2017061

[6]

Suqing Lin, Zhengyi Lu. Permanence for two-species Lotka-Volterra systems with delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 137-144. doi: 10.3934/mbe.2006.3.137

[7]

Guichen Lu, Zhengyi Lu. Permanence for two-species Lotka-Volterra cooperative systems with delays. Mathematical Biosciences & Engineering, 2008, 5 (3) : 477-484. doi: 10.3934/mbe.2008.5.477

[8]

Georg Hetzer, Wenxian Shen. Two species competition with an inhibitor involved. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 39-57. doi: 10.3934/dcds.2005.12.39

[9]

Yukio Kan-On. Global bifurcation structure of stationary solutions for a Lotka-Volterra competition model. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 147-162. doi: 10.3934/dcds.2002.8.147

[10]

Yukio Kan-On. Bifurcation structures of positive stationary solutions for a Lotka-Volterra competition model with diffusion II: Global structure. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 135-148. doi: 10.3934/dcds.2006.14.135

[11]

Yang Wang, Xiong Li. Uniqueness of traveling front solutions for the Lotka-Volterra system in the weak competition case. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3067-3075. doi: 10.3934/dcdsb.2018300

[12]

Ting-Hui Yang, Weinian Zhang, Kaijen Cheng. Global dynamics of three species omnivory models with Lotka-Volterra interaction. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2867-2881. doi: 10.3934/dcdsb.2016077

[13]

Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650

[14]

Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953

[15]

Jian Fang, Jianhong Wu. Monotone traveling waves for delayed Lotka-Volterra competition systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3043-3058. doi: 10.3934/dcds.2012.32.3043

[16]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[17]

Qi Wang, Chunyi Gai, Jingda Yan. Qualitative analysis of a Lotka-Volterra competition system with advection. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1239-1284. doi: 10.3934/dcds.2015.35.1239

[18]

Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195

[19]

Rui Xu, M.A.J. Chaplain, F.A. Davidson. Periodic solutions of a discrete nonautonomous Lotka-Volterra predator-prey model with time delays. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 823-831. doi: 10.3934/dcdsb.2004.4.823

[20]

Norimichi Hirano, Wieslaw Krawcewicz, Haibo Ruan. Existence of nonstationary periodic solutions for $\Gamma$-symmetric Lotka-Volterra type systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 709-735. doi: 10.3934/dcds.2011.30.709

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]