July  2008, 20(3): 713-724. doi: 10.3934/dcds.2008.20.713

A continuous Bowen-Mane type phenomenon

1. 

Departamento de Matemática, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta, Chile, Chile

2. 

Departamento de Matemática, Fac. de Ciencias, Universidad de Santiago, Alameda 3363, Santiago, Chile

3. 

Instituto Nacional de Matemática Pura e Aplicada, IMPA, Estrada Dona Castorina 110, 22460-320, Rio de Janeiro, Brazil

Received  January 2007 Revised  August 2007 Published  December 2007

In this work we exhibit a one-parameter family of $C^1$-diffeomorphisms $F_\alpha$ of the 2-sphere, where $\alpha>1$, such that the equator $\S^1$ is an attracting set for every $F_\alpha$ and $F_\alpha|_{\S^1}$ is the identity. For $\alpha>2$ the Lebesgue measure on the equator is a non ergodic physical measure having uncountably many ergodic components. On the other hand, for $1<\alpha\leq 2$ there is no physical measure for $F_\alpha$. If $\alpha<2$ this follows directly from the fact that the $\omega$-limit of almost every point is a single point on the equator (and the basin of each of these points has zero Lebesgue measure). This is no longer true for $\alpha=2$, and the non existence of physical measure in this critical case is a more subtle issue.
Citation: Esteban Muñoz-Young, Andrés Navas, Enrique Pujals, Carlos H. Vásquez. A continuous Bowen-Mane type phenomenon. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 713-724. doi: 10.3934/dcds.2008.20.713
[1]

Vítor Araújo, Ali Tahzibi. Physical measures at the boundary of hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 849-876. doi: 10.3934/dcds.2008.20.849

[2]

Vítor Araújo. Semicontinuity of entropy, existence of equilibrium states and continuity of physical measures. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 371-386. doi: 10.3934/dcds.2007.17.371

[3]

Xavier Bressaud. Expanding interval maps with intermittent behaviour, physical measures and time scales. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 517-546. doi: 10.3934/dcds.2004.11.517

[4]

Mrinal Kanti Roychowdhury. Quantization coefficients for ergodic measures on infinite symbolic space. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2829-2846. doi: 10.3934/dcds.2014.34.2829

[5]

Jon Chaika. Hausdorff dimension for ergodic measures of interval exchange transformations. Journal of Modern Dynamics, 2008, 2 (3) : 457-464. doi: 10.3934/jmd.2008.2.457

[6]

Radu Saghin. On the number of ergodic minimizing measures for Lagrangian flows. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 501-507. doi: 10.3934/dcds.2007.17.501

[7]

Marzie Zaj, Abbas Fakhari, Fatemeh Helen Ghane, Azam Ehsani. Physical measures for certain class of non-uniformly hyperbolic endomorphisms on the solid torus. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1777-1807. doi: 10.3934/dcds.2018073

[8]

Andrew D. Lewis. The physical foundations of geometric mechanics. Journal of Geometric Mechanics, 2017, 9 (4) : 487-574. doi: 10.3934/jgm.2017019

[9]

Guizhen Cui, Wenjuan Peng, Lei Tan. On the topology of wandering Julia components. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 929-952. doi: 10.3934/dcds.2011.29.929

[10]

Oliver Jenkinson. Ergodic Optimization. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 197-224. doi: 10.3934/dcds.2006.15.197

[11]

Nils Raabe, Claus Weihs. Physical statistical modelling of bending vibrations. Conference Publications, 2011, 2011 (Special) : 1214-1223. doi: 10.3934/proc.2011.2011.1214

[12]

Nikolai Chernov. The work of Dmitry Dolgopyat on physical models with moving particles. Journal of Modern Dynamics, 2010, 4 (2) : 243-255. doi: 10.3934/jmd.2010.4.243

[13]

Marta Lewicka, Piotr B. Mucha. A local existence result for a system of viscoelasticity with physical viscosity. Evolution Equations & Control Theory, 2013, 2 (2) : 337-353. doi: 10.3934/eect.2013.2.337

[14]

Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513

[15]

Xiaodong Liu. The factorization method for scatterers with different physical properties. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 563-577. doi: 10.3934/dcdss.2015.8.563

[16]

Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757

[17]

Roy Adler, Bruce Kitchens, Michael Shub. Stably ergodic skew products. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 349-350. doi: 10.3934/dcds.1996.2.349

[18]

Alexandre I. Danilenko, Mariusz Lemańczyk. Spectral multiplicities for ergodic flows. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4271-4289. doi: 10.3934/dcds.2013.33.4271

[19]

Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325

[20]

Thierry de la Rue. An introduction to joinings in ergodic theory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 121-142. doi: 10.3934/dcds.2006.15.121

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

[Back to Top]