October  2008, 20(4): 801-822. doi: 10.3934/dcds.2008.20.801

A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds

1. 

SISSA, via Beirut 2-4, 34014 Trieste, Italy

2. 

SISSA, via Beirut 2-4 34014 Trieste

3. 

Institut de Mathématiques Élie Cartan de Nancy, UMR 7502 INRIA/Universités de Nancy/CNRS, POB 239, 54506 Vandoeuvre-lès-Nancy, France

Received  December 2006 Revised  August 2007 Published  January 2008

We consider a generalization of Riemannian geometry that naturally arises in the framework of control theory. Let $X$ and $Y$ be two smooth vector fields on a two-dimensional manifold $M$. If $X$ and $Y$ are everywhere linearly independent, then they define a classical Riemannian metric on $M$ (the metric for which they are orthonormal) and they give to $M$ the structure of metric space. If $X$ and $Y$ become linearly dependent somewhere on $M$, then the corresponding Riemannian metric has singularities, but under generic conditions the metric structure is still well defined. Metric structures that can be defined locally in this way are called almost-Riemannian structures. They are special cases of \ar s, which are naturally defined in terms of submodules of the space of smooth vector fields on $M$. Almost-Riemannian structures show interesting phenomena, in particular those which concern the relation between curvature, presence of conjugate points, and topology of the manifold. The main result of the paper is a generalization to almost-Riemannian structures of the Gauss-Bonnet formula.
Citation: Andrei Agrachev, Ugo Boscain, Mario Sigalotti. A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 801-822. doi: 10.3934/dcds.2008.20.801
[1]

Eric L. Grinberg, Haizhong Li. The Gauss-Bonnet-Grotemeyer Theorem in space forms. Inverse Problems & Imaging, 2010, 4 (4) : 655-664. doi: 10.3934/ipi.2010.4.655

[2]

Daniel Genin, Serge Tabachnikov. On configuration spaces of plane polygons, sub-Riemannian geometry and periodic orbits of outer billiards. Journal of Modern Dynamics, 2007, 1 (2) : 155-173. doi: 10.3934/jmd.2007.1.155

[3]

Mrinal Kanti Roychowdhury. Least upper bound of the exact formula for optimal quantization of some uniform Cantor distributions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4555-4570. doi: 10.3934/dcds.2018199

[4]

Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. Optimal control for an epidemic in populations of varying size. Conference Publications, 2015, 2015 (special) : 549-561. doi: 10.3934/proc.2015.0549

[5]

M. Delgado-Téllez, Alberto Ibort. On the geometry and topology of singular optimal control problems and their solutions. Conference Publications, 2003, 2003 (Special) : 223-233. doi: 10.3934/proc.2003.2003.223

[6]

Anthony M. Bloch, Rohit Gupta, Ilya V. Kolmanovsky. Neighboring extremal optimal control for mechanical systems on Riemannian manifolds. Journal of Geometric Mechanics, 2016, 8 (3) : 257-272. doi: 10.3934/jgm.2016007

[7]

Miguel-C. Muñoz-Lecanda. On some aspects of the geometry of non integrable distributions and applications. Journal of Geometric Mechanics, 2018, 10 (4) : 445-465. doi: 10.3934/jgm.2018017

[8]

Relinde Jurrius, Ruud Pellikaan. On defining generalized rank weights. Advances in Mathematics of Communications, 2017, 11 (1) : 225-235. doi: 10.3934/amc.2017014

[9]

Minoru Murai, Waichiro Matsumoto, Shoji Yotsutani. Representation formula for the plane closed elastic curves. Conference Publications, 2013, 2013 (special) : 565-585. doi: 10.3934/proc.2013.2013.565

[10]

Anulekha Dhara, Aparna Mehra. Conjugate duality for generalized convex optimization problems. Journal of Industrial & Management Optimization, 2007, 3 (3) : 415-427. doi: 10.3934/jimo.2007.3.415

[11]

Mohammad Hadi Noori Skandari, Marzieh Habibli, Alireza Nazemi. A direct method based on the Clenshaw-Curtis formula for fractional optimal control problems. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019035

[12]

Isabeau Birindelli, Enrico Valdinoci. On the Allen-Cahn equation in the Grushin plane: A monotone entire solution that is not one-dimensional. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 823-838. doi: 10.3934/dcds.2011.29.823

[13]

Alexander Nabutovsky and Regina Rotman. Lengths of geodesics between two points on a Riemannian manifold. Electronic Research Announcements, 2007, 13: 13-20.

[14]

Di Wu, Yanqin Bai, Fusheng Xie. Time-scaling transformation for optimal control problem with time-varying delay. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020098

[15]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019106

[16]

Juan Campos, Rafael Ortega. Location of fixed points and periodic solutions in the plane. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 517-523. doi: 10.3934/dcdsb.2008.9.517

[17]

Dubi Kelmer. Approximation of points in the plane by generic lattice orbits. Journal of Modern Dynamics, 2017, 11: 143-153. doi: 10.3934/jmd.2017007

[18]

Urszula Ledzewicz, Helen Moore. Optimal control applied to a generalized Michaelis-Menten model of CML therapy. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 331-346. doi: 10.3934/dcdsb.2018022

[19]

Mehar Chand, Jyotindra C. Prajapati, Ebenezer Bonyah, Jatinder Kumar Bansal. Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 539-560. doi: 10.3934/dcdss.2020030

[20]

Gabriele Link, Jean-Claude Picaud. Ergodic geometry for non-elementary rank one manifolds. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6257-6284. doi: 10.3934/dcds.2016072

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (23)

Other articles
by authors

[Back to Top]