
Previous Article
Topological invariants for singularities of real vector fields in dimension three
 DCDS Home
 This Issue

Next Article
Existence of periodic solutions of a system of damped wave equations in thin domains
A GaussBonnetlike formula on twodimensional almostRiemannian manifolds
1.  SISSA, via Beirut 24, 34014 Trieste, Italy 
2.  SISSA, via Beirut 24 34014 Trieste 
3.  Institut de Mathématiques Élie Cartan de Nancy, UMR 7502 INRIA/Universités de Nancy/CNRS, POB 239, 54506 VandoeuvrelèsNancy, France 
[1] 
Eric L. Grinberg, Haizhong Li. The GaussBonnetGrotemeyer Theorem in space forms. Inverse Problems & Imaging, 2010, 4 (4) : 655664. doi: 10.3934/ipi.2010.4.655 
[2] 
Daniel Genin, Serge Tabachnikov. On configuration spaces of plane polygons, subRiemannian geometry and periodic orbits of outer billiards. Journal of Modern Dynamics, 2007, 1 (2) : 155173. doi: 10.3934/jmd.2007.1.155 
[3] 
Mrinal Kanti Roychowdhury. Least upper bound of the exact formula for optimal quantization of some uniform Cantor distributions. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 45554570. doi: 10.3934/dcds.2018199 
[4] 
M. DelgadoTéllez, Alberto Ibort. On the geometry and topology of singular optimal control problems and their solutions. Conference Publications, 2003, 2003 (Special) : 223233. doi: 10.3934/proc.2003.2003.223 
[5] 
Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. Optimal control for an epidemic in populations of varying size. Conference Publications, 2015, 2015 (special) : 549561. doi: 10.3934/proc.2015.0549 
[6] 
Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with timedelay. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021076 
[7] 
Anthony M. Bloch, Rohit Gupta, Ilya V. Kolmanovsky. Neighboring extremal optimal control for mechanical systems on Riemannian manifolds. Journal of Geometric Mechanics, 2016, 8 (3) : 257272. doi: 10.3934/jgm.2016007 
[8] 
MiguelC. MuñozLecanda. On some aspects of the geometry of non integrable distributions and applications. Journal of Geometric Mechanics, 2018, 10 (4) : 445465. doi: 10.3934/jgm.2018017 
[9] 
Relinde Jurrius, Ruud Pellikaan. On defining generalized rank weights. Advances in Mathematics of Communications, 2017, 11 (1) : 225235. doi: 10.3934/amc.2017014 
[10] 
Ke Wei, JianFeng Cai, Tony F. Chan, Shingyu Leung. Guarantees of riemannian optimization for low rank matrix completion. Inverse Problems & Imaging, 2020, 14 (2) : 233265. doi: 10.3934/ipi.2020011 
[11] 
Minoru Murai, Waichiro Matsumoto, Shoji Yotsutani. Representation formula for the plane closed elastic curves. Conference Publications, 2013, 2013 (special) : 565585. doi: 10.3934/proc.2013.2013.565 
[12] 
Anulekha Dhara, Aparna Mehra. Conjugate duality for generalized convex optimization problems. Journal of Industrial & Management Optimization, 2007, 3 (3) : 415427. doi: 10.3934/jimo.2007.3.415 
[13] 
Mohammad Hadi Noori Skandari, Marzieh Habibli, Alireza Nazemi. A direct method based on the ClenshawCurtis formula for fractional optimal control problems. Mathematical Control & Related Fields, 2020, 10 (1) : 171187. doi: 10.3934/mcrf.2019035 
[14] 
Alexander Nabutovsky and Regina Rotman. Lengths of geodesics between two points on a Riemannian manifold. Electronic Research Announcements, 2007, 13: 1320. 
[15] 
Isabeau Birindelli, Enrico Valdinoci. On the AllenCahn equation in the Grushin plane: A monotone entire solution that is not onedimensional. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 823838. doi: 10.3934/dcds.2011.29.823 
[16] 
Juan Campos, Rafael Ortega. Location of fixed points and periodic solutions in the plane. Discrete & Continuous Dynamical Systems  B, 2008, 9 (3&4, May) : 517523. doi: 10.3934/dcdsb.2008.9.517 
[17] 
Dubi Kelmer. Approximation of points in the plane by generic lattice orbits. Journal of Modern Dynamics, 2017, 11: 143153. doi: 10.3934/jmd.2017007 
[18] 
Di Wu, Yanqin Bai, Fusheng Xie. Timescaling transformation for optimal control problem with timevarying delay. Discrete & Continuous Dynamical Systems  S, 2020, 13 (6) : 16831695. doi: 10.3934/dcdss.2020098 
[19] 
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185204. doi: 10.3934/jimo.2019106 
[20] 
Rashad M. Asharabi, Jürgen Prestin. Computing eigenpairs of twoparameter SturmLiouville systems using the bivariate sincGauss formula. Communications on Pure & Applied Analysis, 2020, 19 (8) : 41434158. doi: 10.3934/cpaa.2020185 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]