October  2008, 20(4): 823-847. doi: 10.3934/dcds.2008.20.823

Topological invariants for singularities of real vector fields in dimension three

1. 

Dpto. de Estadística e Investigación Operativa, Universidad de Alicante, 03690 San Vicente del Raspeig, Alicante, Spain

2. 

Foundation Getulio Vargas, Rio de Janeiro, Brazil

3. 

Dpto. Álgebra, Geometría y Topología, Universidad de Valladolid, 47005 Valladolid, Spain

Received  December 2006 Revised  September 2007 Published  January 2008

We give topological invariants for a wide class of abso-lutely isolated singularities of three-dimensional real vector fields. Our invariants are complete once the desingularization morphism $\pi$ is fixed. They are obtained in terms of a finite set of configurations depending only on the eigenvalues of the singularities.
Citation: C. Alonso-González, M. I. Camacho, F. Cano. Topological invariants for singularities of real vector fields in dimension three. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 823-847. doi: 10.3934/dcds.2008.20.823
[1]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[2]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[3]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021005

[4]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[5]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[6]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[7]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[8]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[9]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[10]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[11]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[12]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]