October  2008, 20(4): 939-959. doi: 10.3934/dcds.2008.20.939

Dynamics of local map of a discrete Brusselator model: eventually trapping regions and strange attractors

1. 

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, United States

Received  April 2007 Revised  October 2007 Published  January 2008

The reaction-diffusion equation for the Brusselator model produces a coupled map lattice (CML) by discretization. The two-dimensional nonlinear local map of this lattice has rich and interesting dynamics. In [7] we studied the dynamics of the local map, focusing on trajectories escaping to infinity, and the Julia set. In this paper we build a correspondence between CML and its local map via traveling waves, and then using this correspondence we study asymptotic properties of this CML. We show the existence of a bounded region in which every trajectory in the Julia set is eventually trapped. We also find a region where every bounded trajectory visits. Finally, we present some strange attractors that are numerically observed in the Julia set.
Citation: Hunseok Kang. Dynamics of local map of a discrete Brusselator model: eventually trapping regions and strange attractors. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 939-959. doi: 10.3934/dcds.2008.20.939
[1]

Miaohua Jiang, Qiang Zhang. A coupled map lattice model of tree dispersion. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 83-101. doi: 10.3934/dcdsb.2008.9.83

[2]

Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757

[3]

Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479

[4]

Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic & Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707

[5]

Gerhard Keller, Carlangelo Liverani. Coupled map lattices without cluster expansion. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 325-335. doi: 10.3934/dcds.2004.11.325

[6]

Fanni M. Sélley. Symmetry breaking in a globally coupled map of four sites. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3707-3734. doi: 10.3934/dcds.2018161

[7]

Kang-Ling Liao, Chih-Wen Shih. A Lattice model on somitogenesis of zebrafish. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2789-2814. doi: 10.3934/dcdsb.2012.17.2789

[8]

Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems & Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163

[9]

Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899

[10]

Mila Nikolova. Model distortions in Bayesian MAP reconstruction. Inverse Problems & Imaging, 2007, 1 (2) : 399-422. doi: 10.3934/ipi.2007.1.399

[11]

B. Fernandez, P. Guiraud. Route to chaotic synchronisation in coupled map lattices: Rigorous results. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 435-456. doi: 10.3934/dcdsb.2004.4.435

[12]

Honglan Zhu, Qin Ni, Meilan Zeng. A quasi-Newton trust region method based on a new fractional model. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 237-249. doi: 10.3934/naco.2015.5.237

[13]

Xin Zhang, Jie Wen, Qin Ni. Subspace trust-region algorithm with conic model for unconstrained optimization. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 223-234. doi: 10.3934/naco.2013.3.223

[14]

Natalia Ptitsyna, Stephen P. Shipman. A lattice model for resonance in open periodic waveguides. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 989-1020. doi: 10.3934/dcdss.2012.5.989

[15]

Phoebus Rosakis. Continuum surface energy from a lattice model. Networks & Heterogeneous Media, 2014, 9 (3) : 453-476. doi: 10.3934/nhm.2014.9.453

[16]

I. D. Chueshov, Iryna Ryzhkova. A global attractor for a fluid--plate interaction model. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1635-1656. doi: 10.3934/cpaa.2013.12.1635

[17]

Rana D. Parshad, Juan B. Gutierrez. On the global attractor of the Trojan Y Chromosome model. Communications on Pure & Applied Analysis, 2011, 10 (1) : 339-359. doi: 10.3934/cpaa.2011.10.339

[18]

Alexey Cheskidov, Susan Friedlander, Nataša Pavlović. An inviscid dyadic model of turbulence: The global attractor. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 781-794. doi: 10.3934/dcds.2010.26.781

[19]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice systems with random coupled coefficients. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2221-2245. doi: 10.3934/cpaa.2016035

[20]

Yu-Hao Liang, Wan-Rou Wu, Jonq Juang. Fastest synchronized network and synchrony on the Julia set of complex-valued coupled map lattices. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 173-184. doi: 10.3934/dcdsb.2016.21.173

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]