• Previous Article
    Relative compactness in $L^p$ of solutions of some 2m components competition-diffusion systems
  • DCDS Home
  • This Issue
  • Next Article
    Superposition of selfdual functionals in non-homogeneous boundary value problems and differential systems
January  2008, 21(1): 221-232. doi: 10.3934/dcds.2008.21.221

Existence of radial solutions for an elliptic problem involving exponential nonlinearities

1. 

Dip. di Matematica, Università di Roma "La Sapienza", P.le A.Moro 2 - 00185 - Roma

Received  February 2007 Revised  September 2007 Published  February 2008

Let us consider the problem

$-\Delta u+a(|x|)u=\lambda e^u$in$\ B_1,$       (0.1)
$u=0$ on$ \partial B_1.$

where $B_1$ is the unit ball in $R^N$, $N\ge2$, $\lambda>0$ and $a(|x|)\ge0$ is a smooth radial function.
    Under some suitable assumptions on the regular part of the Green function of the operator $-u''- \frac{N-1}{r}u+a(r)u$, we prove the existence of a radial solution to (0.1) for $\lambda$ small enough.

Citation: M. Grossi. Existence of radial solutions for an elliptic problem involving exponential nonlinearities. Discrete & Continuous Dynamical Systems, 2008, 21 (1) : 221-232. doi: 10.3934/dcds.2008.21.221
[1]

Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks & Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007

[2]

Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791

[3]

Sungwon Cho. Alternative proof for the existence of Green's function. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1307-1314. doi: 10.3934/cpaa.2011.10.1307

[4]

Isabel Flores, Matteo Franca, Leonelo Iturriaga. Positive radial solutions involving nonlinearities with zeros. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2555-2579. doi: 10.3934/dcds.2019107

[5]

Cristian Bereanu, Petru Jebelean, Jean Mawhin. Radial solutions for Neumann problems with $\phi$-Laplacians and pendulum-like nonlinearities. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 637-648. doi: 10.3934/dcds.2010.28.637

[6]

Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143-164. doi: 10.3934/jcd.2015001

[7]

Hasib Khan, Cemil Tunc, Aziz Khan. Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2475-2487. doi: 10.3934/dcdss.2020139

[8]

Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501

[9]

Seick Kim, Longjuan Xu. Green's function for second order parabolic equations with singular lower order coefficients. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021164

[10]

David Hoff. Pointwise bounds for the Green's function for the Neumann-Laplace operator in $ \text{R}^3 $. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021037

[11]

Soohyun Bae, Yūki Naito. Separation structure of radial solutions for semilinear elliptic equations with exponential nonlinearity. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4537-4554. doi: 10.3934/dcds.2018198

[12]

Hiroshi Morishita, Eiji Yanagida, Shoji Yotsutani. Structure of positive radial solutions including singular solutions to Matukuma's equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 871-888. doi: 10.3934/cpaa.2005.4.871

[13]

Martin D. Buhmann, Slawomir Dinew. Limits of radial basis function interpolants. Communications on Pure & Applied Analysis, 2007, 6 (3) : 569-585. doi: 10.3934/cpaa.2007.6.569

[14]

Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems & Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487

[15]

Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure & Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098

[16]

Zhi-Min Chen. Straightforward approximation of the translating and pulsating free surface Green function. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2767-2783. doi: 10.3934/dcdsb.2014.19.2767

[17]

Claudia Bucur. Some observations on the Green function for the ball in the fractional Laplace framework. Communications on Pure & Applied Analysis, 2016, 15 (2) : 657-699. doi: 10.3934/cpaa.2016.15.657

[18]

Dongho Chae. Existence of a semilinear elliptic system with exponential nonlinearities. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 709-718. doi: 10.3934/dcds.2007.18.709

[19]

Andrea Malchiodi. Topological methods for an elliptic equation with exponential nonlinearities. Discrete & Continuous Dynamical Systems, 2008, 21 (1) : 277-294. doi: 10.3934/dcds.2008.21.277

[20]

Pawan Kumar Mishra, Sarika Goyal, K. Sreenadh. Polyharmonic Kirchhoff type equations with singular exponential nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1689-1717. doi: 10.3934/cpaa.2016009

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]