January  2008, 21(1): 233-244. doi: 10.3934/dcds.2008.21.233

Relative compactness in $L^p$ of solutions of some 2m components competition-diffusion systems

1. 

Laboratoire de Mathématiques, CNRS et Université de Paris-Sud XI, F-91405 Orsay Cedex, France

2. 

Department of Mathematics, Faculty of Humanities and Social Sciences, Iwate University, Morioka, 020-8550, Japan

3. 

Department of Mathematics, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tamaku, Kawasaki 214-8571, Japan

4. 

Department of Applied Mathematics and Informatics, Ryukoku University, Seta, Otsu 520-2194

Received  January 2007 Revised  October 2007 Published  February 2008

We consider a class of $2m$ components competition-diffusion systems which involve $m$ parabolic equations as well as $m$ ordinary differential equation, and prove the strong convergence in $L^p$ of a subsequence of each component as the reaction coefficient tends to infinity. In the special case of $4$ components the solution of this system converges to that of a Stefan problem.
Citation: Danielle Hilhorst, Masato Iida, Masayasu Mimura, Hirokazu Ninomiya. Relative compactness in $L^p$ of solutions of some 2m components competition-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 233-244. doi: 10.3934/dcds.2008.21.233
[1]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[2]

Danielle Hilhorst, Hideki Murakawa. Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium. Networks & Heterogeneous Media, 2014, 9 (4) : 669-682. doi: 10.3934/nhm.2014.9.669

[3]

Yan-Yu Chen, Yoshihito Kohsaka, Hirokazu Ninomiya. Traveling spots and traveling fingers in singular limit problems of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 697-714. doi: 10.3934/dcdsb.2014.19.697

[4]

Sebastién Gaucel, Michel Langlais. Some remarks on a singular reaction-diffusion system arising in predator-prey modeling. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 61-72. doi: 10.3934/dcdsb.2007.8.61

[5]

Dieter Bothe, Michel Pierre. The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 49-59. doi: 10.3934/dcdss.2012.5.49

[6]

Boris Andreianov, Halima Labani. Preconditioning operators and $L^\infty$ attractor for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2179-2199. doi: 10.3934/cpaa.2012.11.2179

[7]

Ricardo Enguiça, Andrea Gavioli, Luís Sanchez. A class of singular first order differential equations with applications in reaction-diffusion. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 173-191. doi: 10.3934/dcds.2013.33.173

[8]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[9]

Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493

[10]

Sze-Bi Hsu, Junping Shi, Feng-Bin Wang. Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3169-3189. doi: 10.3934/dcdsb.2014.19.3169

[11]

Nicolas Bacaër, Cheikh Sokhna. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences & Engineering, 2005, 2 (2) : 227-238. doi: 10.3934/mbe.2005.2.227

[12]

W. E. Fitzgibbon, M. Langlais, J.J. Morgan. A reaction-diffusion system modeling direct and indirect transmission of diseases. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 893-910. doi: 10.3934/dcdsb.2004.4.893

[13]

José-Francisco Rodrigues, Lisa Santos. On a constrained reaction-diffusion system related to multiphase problems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 299-319. doi: 10.3934/dcds.2009.25.299

[14]

Haomin Huang, Mingxin Wang. The reaction-diffusion system for an SIR epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2039-2050. doi: 10.3934/dcdsb.2015.20.2039

[15]

Sebastian Aniţa, Vincenzo Capasso. Stabilization of a reaction-diffusion system modelling malaria transmission. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1673-1684. doi: 10.3934/dcdsb.2012.17.1673

[16]

Michaël Bages, Patrick Martinez. Existence of pulsating waves in a monostable reaction-diffusion system in solid combustion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 817-869. doi: 10.3934/dcdsb.2010.14.817

[17]

José-Francisco Rodrigues, João Lita da Silva. On a unilateral reaction-diffusion system and a nonlocal evolution obstacle problem. Communications on Pure & Applied Analysis, 2004, 3 (1) : 85-95. doi: 10.3934/cpaa.2004.3.85

[18]

Qiang Liu, Zhichang Guo, Chunpeng Wang. Renormalized solutions to a reaction-diffusion system applied to image denoising. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1839-1858. doi: 10.3934/dcdsb.2016025

[19]

Bo Li, Xiaoyan Zhang. Steady states of a Sel'kov-Schnakenberg reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1009-1023. doi: 10.3934/dcdss.2017053

[20]

Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (6)

[Back to Top]