June  2008, 21(2): 393-401. doi: 10.3934/dcds.2008.21.393

Axiom a systems without sinks and sources on $n$-manifolds

1. 

Instituto de Matematica, Universidade Federal do Rio de Janeiro, P.O. Box 68530, Rio de Janeiro, RJ 21945-970, Brazil, Brazil

Received  May 2007 Revised  November 2007 Published  March 2008

It is well known that every Axiom A diffeomorphism defined in the 2-sphere $S^{2}$ has a sink or a source [19]. A natural question is if this property is still true for higher dimensional Axiom A diffeomorphisms and Axiom A vector fields. In this paper we give a negative answer to this question: we prove that for every closed manifold of dimension $n\geq 3$ there are a $C^1$ open set of Axiom A diffeomorphisms and a $C^1$ open set of Axiom A vector fields without sinks and sources. We also show that a sufficient condition for an Axiom A vector field in $S^3$ to exhibit a sink or a source is that every torus in $S^3$ transverse to $X$ is unknotted.
Citation: Enoch H. Apaza, Regis Soares. Axiom a systems without sinks and sources on $n$-manifolds. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 393-401. doi: 10.3934/dcds.2008.21.393
[1]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[2]

Juan Su, Bing Xu, Lan Zou. Bifurcation analysis of an enzyme-catalyzed reaction system with branched sink. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6783-6815. doi: 10.3934/dcdsb.2019167

[3]

Jean-René Chazottes, Renaud Leplaideur. Fluctuations of the nth return time for Axiom A diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 399-411. doi: 10.3934/dcds.2005.13.399

[4]

Luchezar Stoyanov. Pinching conditions, linearization and regularity of Axiom A flows. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 391-412. doi: 10.3934/dcds.2013.33.391

[5]

Christian Bonatti, Nancy Guelman. Axiom A diffeomorphisms derived from Anosov flows. Journal of Modern Dynamics, 2010, 4 (1) : 1-63. doi: 10.3934/jmd.2010.4.1

[6]

Song Wang, Quanxi Shao, Xian Zhou. Knot-optimizing spline networks (KOSNETS) for nonparametric regression. Journal of Industrial & Management Optimization, 2008, 4 (1) : 33-52. doi: 10.3934/jimo.2008.4.33

[7]

Renaud Leplaideur, Benoît Saussol. Large deviations for return times in non-rectangle sets for axiom a diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 327-344. doi: 10.3934/dcds.2008.22.327

[8]

Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems & Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059

[9]

Ernan Haruvy, Ashutosh Prasad, Suresh Sethi, Rong Zhang. Competition with open source as a public good. Journal of Industrial & Management Optimization, 2008, 4 (1) : 199-211. doi: 10.3934/jimo.2008.4.199

[10]

Hui-Ling Li, Heng-Ling Wang, Xiao-Liu Wang. A quasilinear parabolic problem with a source term and a nonlocal absorption. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1945-1956. doi: 10.3934/cpaa.2018092

[11]

Rinaldo M. Colombo, Graziano Guerra. Hyperbolic balance laws with a dissipative non local source. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1077-1090. doi: 10.3934/cpaa.2008.7.1077

[12]

Min Ye, Alexander Barg. Polar codes for distributed hierarchical source coding. Advances in Mathematics of Communications, 2015, 9 (1) : 87-103. doi: 10.3934/amc.2015.9.87

[13]

Victor Isakov, Shuai Lu. Inverse source problems without (pseudo) convexity assumptions. Inverse Problems & Imaging, 2018, 12 (4) : 955-970. doi: 10.3934/ipi.2018040

[14]

Tomomi Yokota, Noriaki Yoshino. Existence of solutions to chemotaxis dynamics with logistic source. Conference Publications, 2015, 2015 (special) : 1125-1133. doi: 10.3934/proc.2015.1125

[15]

Lauri Harhanen, Nuutti Hyvönen. Convex source support in half-plane. Inverse Problems & Imaging, 2010, 4 (3) : 429-448. doi: 10.3934/ipi.2010.4.429

[16]

Keisuke Minami, Takahiro Matsuda, Tetsuya Takine, Taku Noguchi. Asynchronous multiple source network coding for wireless broadcasting. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 577-592. doi: 10.3934/naco.2011.1.577

[17]

Giuseppina Autuori, Patrizia Pucci. Kirchhoff systems with nonlinear source and boundary damping terms. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1161-1188. doi: 10.3934/cpaa.2010.9.1161

[18]

Yang Wang, Zhengfang Zhou. Source extraction in audio via background learning. Inverse Problems & Imaging, 2013, 7 (1) : 283-290. doi: 10.3934/ipi.2013.7.283

[19]

Martin Hanke, William Rundell. On rational approximation methods for inverse source problems. Inverse Problems & Imaging, 2011, 5 (1) : 185-202. doi: 10.3934/ipi.2011.5.185

[20]

Samitha Samaranayake, Axel Parmentier, Ethan Xuan, Alexandre Bayen. A mathematical framework for delay analysis in single source networks. Networks & Heterogeneous Media, 2017, 12 (1) : 113-145. doi: 10.3934/nhm.2017005

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]