
Previous Article
Renormalization of diophantine skew flows, with applications to the reducibility problem
 DCDS Home
 This Issue

Next Article
Nonautonomous and random attractors for delay random semilinear equations without uniqueness
Thresholds for breather solutions of the discrete nonlinear Schrödinger equation with saturable and power nonlinearity
1.  Departamento de Fisica Aplicada I, Escuela Universitaria Politénica, C/ Virgen de Africa, 7, University of Sevilla, 41011 Sevilla, Spain 
2.  Maxwell Institute and Department of Mathematics, HeriotWatt University, Edinburgh EH14 4AS, Scotland, United Kingdom 
3.  Department of Mathematics, University of the Aegean, Karlovassi 83200, Samos, Greece 
[1] 
Justin Holmer, Chang Liu. Blowup for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blowup profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215242. doi: 10.3934/cpaa.2020264 
[2] 
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449465. doi: 10.3934/cpaa.2020276 
[3] 
Alex H. Ardila, Mykael Cardoso. Blowup solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101119. doi: 10.3934/cpaa.2020259 
[4] 
Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020456 
[5] 
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020450 
[6] 
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 54375473. doi: 10.3934/cpaa.2020247 
[7] 
José Luis López. A quantum approach to KellerSegel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems  A, 2020 doi: 10.3934/dcds.2020376 
[8] 
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020436 
[9] 
Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inversepower potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121143. doi: 10.3934/cpaa.2020260 
[10] 
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020461 
[11] 
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 15031528. doi: 10.3934/era.2020079 
[12] 
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $supercritical case. Discrete & Continuous Dynamical Systems  A, 2021, 41 (2) : 701746. doi: 10.3934/dcds.2020298 
[13] 
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : . doi: 10.3934/cpaa.2020272 
[14] 
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Kleingordon equation. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020448 
[15] 
Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 15731624. doi: 10.3934/era.2020115 
[16] 
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 471487. doi: 10.3934/dcds.2020264 
[17] 
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : . doi: 10.3934/krm.2020050 
[18] 
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with supcubic nonlinearity. Discrete & Continuous Dynamical Systems  A, 2021, 41 (2) : 569600. doi: 10.3934/dcds.2020270 
[19] 
ShaoXia Qiao, LiJun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : . doi: 10.3934/era.2020116 
[20] 
Shiqi Ma. On recent progress of singlerealization recoveries of random Schrödinger systems. Electronic Research Archive, , () : . doi: 10.3934/era.2020121 
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]