
Previous Article
Renormalization of diophantine skew flows, with applications to the reducibility problem
 DCDS Home
 This Issue

Next Article
Nonautonomous and random attractors for delay random semilinear equations without uniqueness
Thresholds for breather solutions of the discrete nonlinear Schrödinger equation with saturable and power nonlinearity
1.  Departamento de Fisica Aplicada I, Escuela Universitaria Politénica, C/ Virgen de Africa, 7, University of Sevilla, 41011 Sevilla, Spain 
2.  Maxwell Institute and Department of Mathematics, HeriotWatt University, Edinburgh EH14 4AS, Scotland, United Kingdom 
3.  Department of Mathematics, University of the Aegean, Karlovassi 83200, Samos, Greece 
[1] 
TaiChia Lin, TsungFang Wu. Multiple positive solutions of saturable nonlinear Schrödinger equations with intensity functions. Discrete & Continuous Dynamical Systems, 2020, 40 (4) : 21652187. doi: 10.3934/dcds.2020110 
[2] 
Jianqing Chen. Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity. Discrete & Continuous Dynamical Systems  S, 2016, 9 (6) : 16131628. doi: 10.3934/dcdss.2016066 
[3] 
Noboru Okazawa, Toshiyuki Suzuki, Tomomi Yokota. Energy methods for abstract nonlinear Schrödinger equations. Evolution Equations & Control Theory, 2012, 1 (2) : 337354. doi: 10.3934/eect.2012.1.337 
[4] 
D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2002, 8 (3) : 563584. doi: 10.3934/dcds.2002.8.563 
[5] 
Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 69436974. doi: 10.3934/dcds.2016102 
[6] 
Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems  S, 2021, 14 (8) : 30273042. doi: 10.3934/dcdss.2021031 
[7] 
Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 831850. doi: 10.3934/cpaa.2013.12.831 
[8] 
Jibin Li, Yan Zhou. Bifurcations and exact traveling wave solutions for the nonlinear Schrödinger equation with fourthorder dispersion and dual power law nonlinearity. Discrete & Continuous Dynamical Systems  S, 2020, 13 (11) : 30833097. doi: 10.3934/dcdss.2020113 
[9] 
Shalva Amiranashvili, Raimondas Čiegis, Mindaugas Radziunas. Numerical methods for a class of generalized nonlinear Schrödinger equations. Kinetic & Related Models, 2015, 8 (2) : 215234. doi: 10.3934/krm.2015.8.215 
[10] 
Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 8388. doi: 10.3934/cpaa.2008.7.83 
[11] 
Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems  S, 2012, 5 (5) : 971987. doi: 10.3934/dcdss.2012.5.971 
[12] 
Michal Fečkan, Vassilis M. Rothos. Travelling waves of forced discrete nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems  S, 2011, 4 (5) : 11291145. doi: 10.3934/dcdss.2011.4.1129 
[13] 
Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations & Control Theory, 2018, 7 (2) : 317334. doi: 10.3934/eect.2018016 
[14] 
Nakao Hayashi, Tohru Ozawa. Schrödinger equations with nonlinearity of integral type. Discrete & Continuous Dynamical Systems, 1995, 1 (4) : 475484. doi: 10.3934/dcds.1995.1.475 
[15] 
Tsukasa Iwabuchi, Kota Uriya. Illposedness for the quadratic nonlinear Schrödinger equation with nonlinearity $u^2$. Communications on Pure & Applied Analysis, 2015, 14 (4) : 13951405. doi: 10.3934/cpaa.2015.14.1395 
[16] 
Takeshi Wada. A remark on local wellposedness for nonlinear Schrödinger equations with power nonlinearityan alternative approach. Communications on Pure & Applied Analysis, 2019, 18 (3) : 13591374. doi: 10.3934/cpaa.2019066 
[17] 
Jaeyoung Byeon, Louis Jeanjean. Multipeak standing waves for nonlinear Schrödinger equations with a general nonlinearity. Discrete & Continuous Dynamical Systems, 2007, 19 (2) : 255269. doi: 10.3934/dcds.2007.19.255 
[18] 
Yinbin Deng, Yi Li, Xiujuan Yan. Nodal solutions for a quasilinear Schrödinger equation with critical nonlinearity and nonsquare diffusion. Communications on Pure & Applied Analysis, 2015, 14 (6) : 24872508. doi: 10.3934/cpaa.2015.14.2487 
[19] 
Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 21052123. doi: 10.3934/cpaa.2017104 
[20] 
Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 22392259. doi: 10.3934/cpaa.2018107 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]