-
Previous Article
On the behavior of solutions to Schrödinger equations with dipole type potentials near the singularity
- DCDS Home
- This Issue
-
Next Article
Reaction-diffusion equations for population dynamics with forced speed I - The case of the whole space
Supercritical elliptic problems from a perturbation viewpoint
1. | Departamento de Ingeniería Matemática and CMM, Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile |
[1] |
Yanfang Peng. On elliptic systems with Sobolev critical exponent. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3357-3373. doi: 10.3934/dcds.2016.36.3357 |
[2] |
Satoshi Hashimoto, Mitsuharu Ôtani. Existence of nontrivial solutions for some elliptic equations with supercritical nonlinearity in exterior domains. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 323-333. doi: 10.3934/dcds.2007.19.323 |
[3] |
Jing Zhang, Shiwang Ma. Positive solutions of perturbed elliptic problems involving Hardy potential and critical Sobolev exponent. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1999-2009. doi: 10.3934/dcdsb.2016033 |
[4] |
Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure and Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527 |
[5] |
Riccardo Molle, Donato Passaseo. On the behaviour of the solutions for a class of nonlinear elliptic problems in exterior domains. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 445-454. doi: 10.3934/dcds.1998.4.445 |
[6] |
Jaime Arango, Adriana Gómez. Critical points of solutions to elliptic problems in planar domains. Communications on Pure and Applied Analysis, 2011, 10 (1) : 327-338. doi: 10.3934/cpaa.2011.10.327 |
[7] |
M. L. Miotto. Multiple solutions for elliptic problem in $\mathbb{R}^N$ with critical Sobolev exponent and weight function. Communications on Pure and Applied Analysis, 2010, 9 (1) : 233-248. doi: 10.3934/cpaa.2010.9.233 |
[8] |
Futoshi Takahashi. An eigenvalue problem related to blowing-up solutions for a semilinear elliptic equation with the critical Sobolev exponent. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 907-922. doi: 10.3934/dcdss.2011.4.907 |
[9] |
Jingbo Dou, Qianqiao Guo. Solutions for polyharmonic elliptic problems with critical nonlinearities in symmetric domains. Communications on Pure and Applied Analysis, 2012, 11 (2) : 453-464. doi: 10.3934/cpaa.2012.11.453 |
[10] |
Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231 |
[11] |
Mousomi Bhakta, Debangana Mukherjee. Semilinear nonlocal elliptic equations with critical and supercritical exponents. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1741-1766. doi: 10.3934/cpaa.2017085 |
[12] |
Seunghyeok Kim, Angela Pistoia. Supercritical problems in domains with thin toroidal holes. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4671-4688. doi: 10.3934/dcds.2014.34.4671 |
[13] |
Soohyun Bae. Positive entire solutions of inhomogeneous semilinear elliptic equations with supercritical exponent. Conference Publications, 2005, 2005 (Special) : 50-59. doi: 10.3934/proc.2005.2005.50 |
[14] |
Xiaoli Chen, Jianfu Yang. Improved Sobolev inequalities and critical problems. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3673-3695. doi: 10.3934/cpaa.2020162 |
[15] |
Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4297-4318. doi: 10.3934/dcds.2021037 |
[16] |
Yanfang Peng, Jing Yang. Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents. Communications on Pure and Applied Analysis, 2015, 14 (2) : 439-455. doi: 10.3934/cpaa.2015.14.439 |
[17] |
Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103 |
[18] |
T. Ogawa. The degenerate drift-diffusion system with the Sobolev critical exponent. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 875-886. doi: 10.3934/dcdss.2011.4.875 |
[19] |
Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007 |
[20] |
Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]