-
Previous Article
Perturbations of embedded eigenvalues for the bilaplacian on a cylinder
- DCDS Home
- This Issue
-
Next Article
Finite rank approximations of expanding maps with neutral singularities
Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions
1. | Laboratoire de Mathématiques et Physique Théorique CNRS UMR 6083, Fédération de Recherche Denis Poisson (FR 2964), Université François Rabelais, Tours. Parc de Grandmont, 37200 Tours, France |
[1] |
Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1047-1069. doi: 10.3934/dcds.2008.21.1047 |
[2] |
Qiong Meng, X. H. Tang. Solutions of a second-order Hamiltonian system with periodic boundary conditions. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1053-1067. doi: 10.3934/cpaa.2010.9.1053 |
[3] |
Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395 |
[4] |
Raegan Higgins. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 609-622. doi: 10.3934/dcdsb.2010.13.609 |
[5] |
Monica Motta, Caterina Sartori. Uniqueness of solutions for second order Bellman-Isaacs equations with mixed boundary conditions. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 739-765. doi: 10.3934/dcds.2008.20.739 |
[6] |
Rosaria Di Nardo. Nonlinear parabolic equations with a lower order term and $L^1$ data. Communications on Pure and Applied Analysis, 2010, 9 (4) : 929-942. doi: 10.3934/cpaa.2010.9.929 |
[7] |
Daniel Franco, Donal O'Regan. Existence of solutions to second order problems with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 273-280. doi: 10.3934/proc.2003.2003.273 |
[8] |
Abdelkader Boucherif. Positive Solutions of second order differential equations with integral boundary conditions. Conference Publications, 2007, 2007 (Special) : 155-159. doi: 10.3934/proc.2007.2007.155 |
[9] |
P. R. Zingano. Asymptotic behavior of the $L^1$ norm of solutions to nonlinear parabolic equations. Communications on Pure and Applied Analysis, 2004, 3 (1) : 151-159. doi: 10.3934/cpaa.2004.3.151 |
[10] |
Johnny Henderson, Rodica Luca. Existence of positive solutions for a system of nonlinear second-order integral boundary value problems. Conference Publications, 2015, 2015 (special) : 596-604. doi: 10.3934/proc.2015.0596 |
[11] |
N. V. Krylov. Uniqueness for Lp-viscosity solutions for uniformly parabolic Isaacs equations with measurable lower order terms. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2495-2516. doi: 10.3934/cpaa.2018119 |
[12] |
Paul Sacks, Mahamadi Warma. Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1$-data. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 761-787. doi: 10.3934/dcds.2014.34.761 |
[13] |
Kyeong-Hun Kim, Kijung Lee. A weighted $L_p$-theory for second-order parabolic and elliptic partial differential systems on a half space. Communications on Pure and Applied Analysis, 2016, 15 (3) : 761-794. doi: 10.3934/cpaa.2016.15.761 |
[14] |
Jaume Llibre, Amar Makhlouf. Periodic solutions of some classes of continuous second-order differential equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 477-482. doi: 10.3934/dcdsb.2017022 |
[15] |
Xuan Wu, Huafeng Xiao. Periodic solutions for a class of second-order differential delay equations. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4253-4269. doi: 10.3934/cpaa.2021159 |
[16] |
Denis R. Akhmetov, Renato Spigler. $L^1$-estimates for the higher-order derivatives of solutions to parabolic equations subject to initial values of bounded total variation. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1051-1074. doi: 10.3934/cpaa.2007.6.1051 |
[17] |
Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897 |
[18] |
Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771 |
[19] |
Stanislav Antontsev, Michel Chipot, Sergey Shmarev. Uniqueness and comparison theorems for solutions of doubly nonlinear parabolic equations with nonstandard growth conditions. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1527-1546. doi: 10.3934/cpaa.2013.12.1527 |
[20] |
Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control and Related Fields, 2018, 8 (1) : 1-34. doi: 10.3934/mcrf.2018001 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]