August  2008, 21(3): 929-943. doi: 10.3934/dcds.2008.21.929

Well-posedness and stability of a multidimensional moving boundary problem modeling the growth of tumor cord

1. 

Department of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, China

2. 

Institute of Mathematics, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China

Received  June 2007 Revised  December 2007 Published  April 2008

In this paper we study a multidimensional moving boundary problem modeling the growth of tumor cord. This problem contains two coupled elliptic equations defined in a bounded domain in $R^2$ whose boundary consists of two disjoint closed curves, one fixed and the other moving and a priori unknown. The evolution of the moving boundary is governed by a Stefan type equation. By using the functional analysis method based on applications of the theory of analytic semigroups, we prove that (1) this problem is locally well-posed in Hölder spaces, (2) it has a unique radially symmetric stationary solution, and (3) this radially symmetric stationary solution is asymptotically stable for arbitrary sufficiently small perturbations in these Hölder spaces.
Citation: Fujun Zhou, Shangbin Cui. Well-posedness and stability of a multidimensional moving boundary problem modeling the growth of tumor cord. Discrete & Continuous Dynamical Systems, 2008, 21 (3) : 929-943. doi: 10.3934/dcds.2008.21.929
[1]

Joachim Escher, Anca-Voichita Matioc. Well-posedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 573-596. doi: 10.3934/dcdsb.2011.15.573

[2]

Mircea Sofonea, Yi-bin Xiao. Tykhonov well-posedness of a viscoplastic contact problem. Evolution Equations & Control Theory, 2020, 9 (4) : 1167-1185. doi: 10.3934/eect.2020048

[3]

Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks & Heterogeneous Media, 2021, 16 (2) : 221-256. doi: 10.3934/nhm.2021005

[4]

Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763

[5]

Iñigo U. Erneta. Well-posedness for boundary value problems for coagulation-fragmentation equations. Kinetic & Related Models, 2020, 13 (4) : 815-835. doi: 10.3934/krm.2020028

[6]

George Avalos, Pelin G. Geredeli, Justin T. Webster. Semigroup well-posedness of a linearized, compressible fluid with an elastic boundary. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1267-1295. doi: 10.3934/dcdsb.2018151

[7]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[8]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[9]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[10]

Changyan Li, Hui Li. Well-posedness of the two-phase flow problem in incompressible MHD. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021090

[11]

Janet Dyson, Rosanna Villella-Bressan, G. F. Webb. The evolution of a tumor cord cell population. Communications on Pure & Applied Analysis, 2004, 3 (3) : 331-352. doi: 10.3934/cpaa.2004.3.331

[12]

K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591

[13]

Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations & Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365

[14]

Ahmed Bchatnia, Aissa Guesmia. Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain. Mathematical Control & Related Fields, 2014, 4 (4) : 451-463. doi: 10.3934/mcrf.2014.4.451

[15]

Aissa Guesmia, Nasser-eddine Tatar. Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure & Applied Analysis, 2015, 14 (2) : 457-491. doi: 10.3934/cpaa.2015.14.457

[16]

Jiang Xu. Well-posedness and stability of classical solutions to the multidimensional full hydrodynamic model for semiconductors. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1073-1092. doi: 10.3934/cpaa.2009.8.1073

[17]

Baoyan Sun, Kung-Chien Wu. Global well-posedness and exponential stability for the fermion equation in weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021147

[18]

Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635

[19]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete & Continuous Dynamical Systems, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[20]

Elena Rossi. Well-posedness of general 1D initial boundary value problems for scalar balance laws. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3577-3608. doi: 10.3934/dcds.2019147

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]