
Previous Article
Indices of singularities of robustly transitive sets
 DCDS Home
 This Issue

Next Article
Transversal families of hyperbolic skewproducts
Wellposedness and stability of a multidimensional moving boundary problem modeling the growth of tumor cord
1.  Department of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, China 
2.  Institute of Mathematics, Sun YatSen University, Guangzhou, Guangdong 510275, China 
[1] 
Joachim Escher, AncaVoichita Matioc. Wellposedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors. Discrete & Continuous Dynamical Systems  B, 2011, 15 (3) : 573596. doi: 10.3934/dcdsb.2011.15.573 
[2] 
Mircea Sofonea, Yibin Xiao. Tykhonov wellposedness of a viscoplastic contact problem^{†}. Evolution Equations & Control Theory, 2020, 9 (4) : 11671185. doi: 10.3934/eect.2020048 
[3] 
Abraham Sylla. Influence of a slow moving vehicle on traffic: Wellposedness and approximation for a mildly nonlocal model. Networks & Heterogeneous Media, 2021, 16 (2) : 221256. doi: 10.3934/nhm.2021005 
[4] 
Barbara Kaltenbacher, Irena Lasiecka. Wellposedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763773. doi: 10.3934/proc.2011.2011.763 
[5] 
Iñigo U. Erneta. Wellposedness for boundary value problems for coagulationfragmentation equations. Kinetic & Related Models, 2020, 13 (4) : 815835. doi: 10.3934/krm.2020028 
[6] 
George Avalos, Pelin G. Geredeli, Justin T. Webster. Semigroup wellposedness of a linearized, compressible fluid with an elastic boundary. Discrete & Continuous Dynamical Systems  B, 2018, 23 (3) : 12671295. doi: 10.3934/dcdsb.2018151 
[7] 
Ivonne Rivas, Muhammad Usman, BingYu Zhang. Global wellposedness and asymptotic behavior of a class of initialboundaryvalue problem of the KortewegDe Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 6181. doi: 10.3934/mcrf.2011.1.61 
[8] 
Zhaohui Huo, Boling Guo. The wellposedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems, 2005, 12 (3) : 387402. doi: 10.3934/dcds.2005.12.387 
[9] 
Hongmei Cao, HaoGuang Li, ChaoJiang Xu, Jiang Xu. Wellposedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829884. doi: 10.3934/krm.2019032 
[10] 
Changyan Li, Hui Li. Wellposedness of the twophase flow problem in incompressible MHD. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021090 
[11] 
Janet Dyson, Rosanna VillellaBressan, G. F. Webb. The evolution of a tumor cord cell population. Communications on Pure & Applied Analysis, 2004, 3 (3) : 331352. doi: 10.3934/cpaa.2004.3.331 
[12] 
K. Domelevo. Wellposedness of a kinetic model of dispersed twophase flow with pointparticles and stability of travelling waves. Discrete & Continuous Dynamical Systems  B, 2002, 2 (4) : 591607. doi: 10.3934/dcdsb.2002.2.591 
[13] 
Stefan Meyer, Mathias Wilke. Global wellposedness and exponential stability for Kuznetsov's equation in $L_p$spaces. Evolution Equations & Control Theory, 2013, 2 (2) : 365378. doi: 10.3934/eect.2013.2.365 
[14] 
Ahmed Bchatnia, Aissa Guesmia. Wellposedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain. Mathematical Control & Related Fields, 2014, 4 (4) : 451463. doi: 10.3934/mcrf.2014.4.451 
[15] 
Aissa Guesmia, Nassereddine Tatar. Some wellposedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure & Applied Analysis, 2015, 14 (2) : 457491. doi: 10.3934/cpaa.2015.14.457 
[16] 
Jiang Xu. Wellposedness and stability of classical solutions to the multidimensional full hydrodynamic model for semiconductors. Communications on Pure & Applied Analysis, 2009, 8 (3) : 10731092. doi: 10.3934/cpaa.2009.8.1073 
[17] 
Baoyan Sun, KungChien Wu. Global wellposedness and exponential stability for the fermion equation in weighted Sobolev spaces. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021147 
[18] 
Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local wellposedness in low regularity of the MKDV equation with periodic boundary condition. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 16351654. doi: 10.3934/dcds.2010.28.1635 
[19] 
Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On wellposedness of a velocityvorticity formulation of the stationary NavierStokes equations with noslip boundary conditions. Discrete & Continuous Dynamical Systems, 2018, 38 (7) : 34593477. doi: 10.3934/dcds.2018148 
[20] 
Elena Rossi. Wellposedness of general 1D initial boundary value problems for scalar balance laws. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 35773608. doi: 10.3934/dcds.2019147 
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]