August  2008, 21(3): 959-975. doi: 10.3934/dcds.2008.21.959

A new problem of adiabatic invariance related to the rigid body dynamics


Università di Padova, Dipartimento di Matematica Pura e Applicata, Via Trieste 63, 35121 Padova, Italy, Italy


Space Research Institute, Profsoyuznaya 84/32, 117997 Moscow, Russian Federation

Received  July 2007 Revised  October 2007 Published  April 2008

We study a new problem of adiabatic invariance, namely a nonlinear oscillator with slowly moving center of oscillation; the frequency of small oscillations vanishes when the center of oscillation passes through the origin (the fast motion is no longer fast), and this can produce nontrivial motions. Similar systems naturally appear in the study of the perturbed Euler rigid body, in the vicinity of proper rotations and in connection with the 1:1 resonance, as models for the normal form. In this paper we provide, on the one hand, a rigorous upper bound on the possible size of chaotic motions; on the other hand we work out, heuristically, a lower bound for the same quantity, and the two bounds do coincide up to a logarithmic correction. We also illustrate the theory by quite accurate numerical results, including, besides the size of the chaotic motions, the behavior of Lyapunov Exponents. As far as the system at hand is a model problem for the rigid body dynamics, our results fill the gap existing in the literature between the theoretically proved stability properties of proper rotations and the numerically observed ones, which in the case of the 1:1 resonance did not completely agree, so indicating a not yet optimal theory.
Citation: Giancarlo Benettin, Massimiliano Guzzo, Anatoly Neishtadt. A new problem of adiabatic invariance related to the rigid body dynamics. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 959-975. doi: 10.3934/dcds.2008.21.959

Sujit Nair, Naomi Ehrich Leonard. Stable synchronization of rigid body networks. Networks and Heterogeneous Media, 2007, 2 (4) : 597-626. doi: 10.3934/nhm.2007.2.597


Sebastián Ferrer, Francisco J. Molero. Andoyer's variables and phases in the free rigid body. Journal of Geometric Mechanics, 2014, 6 (1) : 25-37. doi: 10.3934/jgm.2014.6.25


Kai Koike. Wall effect on the motion of a rigid body immersed in a free molecular flow. Kinetic and Related Models, 2018, 11 (3) : 441-467. doi: 10.3934/krm.2018020


Giancarlo Benettin, Anna Maria Cherubini, Francesco Fassò. Regular and chaotic motions of the fast rotating rigid body: a numerical study. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 521-540. doi: 10.3934/dcdsb.2002.2.521


Arnab Roy, Takéo Takahashi. Local null controllability of a rigid body moving into a Boussinesq flow. Mathematical Control and Related Fields, 2019, 9 (4) : 793-836. doi: 10.3934/mcrf.2019050


Meina Gao, Jianjun Liu. A degenerate KAM theorem for partial differential equations with periodic boundary conditions. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5911-5928. doi: 10.3934/dcds.2020252


Kingshook Biswas. Complete conjugacy invariants of nonlinearizable holomorphic dynamics. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 847-856. doi: 10.3934/dcds.2010.26.847


Banavara N. Shashikanth. Poisson brackets for the dynamically coupled system of a free boundary and a neutrally buoyant rigid body in a body-fixed frame. Journal of Geometric Mechanics, 2020, 12 (1) : 25-52. doi: 10.3934/jgm.2020003


Joris Vankerschaver, Eva Kanso, Jerrold E. Marsden. The geometry and dynamics of interacting rigid bodies and point vortices. Journal of Geometric Mechanics, 2009, 1 (2) : 223-266. doi: 10.3934/jgm.2009.1.223


Piotr Kokocki. Homotopy invariants methods in the global dynamics of strongly damped wave equation. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3227-3250. doi: 10.3934/dcds.2016.36.3227


Matthias Hieber, Miho Murata. The $L^p$-approach to the fluid-rigid body interaction problem for compressible fluids. Evolution Equations and Control Theory, 2015, 4 (1) : 69-87. doi: 10.3934/eect.2015.4.69


Paul Deuring, Stanislav Kračmar, Šárka Nečasová. A leading term for the velocity of stationary viscous incompressible flow around a rigid body performing a rotation and a translation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1389-1409. doi: 10.3934/dcds.2017057


Bernard Bonnard, Olivier Cots, Nataliya Shcherbakova. The Serret-Andoyer Riemannian metric and Euler-Poinsot rigid body motion. Mathematical Control and Related Fields, 2013, 3 (3) : 287-302. doi: 10.3934/mcrf.2013.3.287


Šárka Nečasová, Joerg Wolf. On the existence of global strong solutions to the equations modeling a motion of a rigid body around a viscous fluid. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1539-1562. doi: 10.3934/dcds.2016.36.1539


Brennan McCann, Morad Nazari. Control and maintenance of fully-constrained and underconstrained rigid body motion on Lie groups and their tangent bundles. Journal of Geometric Mechanics, 2022, 14 (1) : 29-55. doi: 10.3934/jgm.2022002


Yaobang Ye, Zongyu Zuo, Michael Basin. Robust adaptive sliding mode tracking control for a rigid body based on Lie subgroups of SO(3). Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1823-1837. doi: 10.3934/dcdss.2022010


Xiaocai Wang, Junxiang Xu, Dongfeng Zhang. A KAM theorem for the elliptic lower dimensional tori with one normal frequency in reversible systems. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2141-2160. doi: 10.3934/dcds.2017092


Zhichao Ma, Junxiang Xu. A KAM theorem for quasi-periodic non-twist mappings and its application. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3169-3185. doi: 10.3934/dcds.2022013


Martijn Bos, Silvio Traversaro, Daniele Pucci, Alessandro Saccon. Efficient geometric linearization of moving-base rigid robot dynamics. Journal of Geometric Mechanics, 2022  doi: 10.3934/jgm.2022009


Davide L. Ferrario, Alessandro Portaluri. Dynamics of the the dihedral four-body problem. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 925-974. doi: 10.3934/dcdss.2013.6.925

2021 Impact Factor: 1.588


  • PDF downloads (82)
  • HTML views (0)
  • Cited by (1)

[Back to Top]