-
Previous Article
Hausdorff dimension of self-affine limit sets with an invariant direction
- DCDS Home
- This Issue
- Next Article
Degree growth of matrix inversion: Birational maps of symmetric, cyclic matrices
1. | Department of Mathematics, Indiana University, Bloomington, IN 47405, United States, United States |
[1] |
Dinh T. Tran, John A. G. Roberts. Linear degree growth in lattice equations. Journal of Computational Dynamics, 2019, 6 (2) : 449-467. doi: 10.3934/jcd.2019023 |
[2] |
Inês Cruz, Helena Mena-Matos, Esmeralda Sousa-Dias. The group of symplectic birational maps of the plane and the dynamics of a family of 4D maps. Journal of Geometric Mechanics, 2020, 12 (3) : 363-375. doi: 10.3934/jgm.2020010 |
[3] |
Lluís Alsedà, Sylvie Ruette. On the set of periods of sigma maps of degree 1. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4683-4734. doi: 10.3934/dcds.2015.35.4683 |
[4] |
Anna Go??biewska, S?awomir Rybicki. Equivariant Conley index versus degree for equivariant gradient maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 985-997. doi: 10.3934/dcdss.2013.6.985 |
[5] |
Christopher F. Novak. Discontinuity-growth of interval-exchange maps. Journal of Modern Dynamics, 2009, 3 (3) : 379-405. doi: 10.3934/jmd.2009.3.379 |
[6] |
Bourama Toni. Upper bounds for limit cycle bifurcation from an isochronous period annulus via a birational linearization. Conference Publications, 2005, 2005 (Special) : 846-853. doi: 10.3934/proc.2005.2005.846 |
[7] |
Zalman Balanov, Wieslaw Krawcewicz, Haibo Ruan. Applied equivariant degree, part I: An axiomatic approach to primary degree. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 983-1016. doi: 10.3934/dcds.2006.15.983 |
[8] |
C. Davini, F. Jourdan. Approximations of degree zero in the Poisson problem. Communications on Pure & Applied Analysis, 2005, 4 (2) : 267-281. doi: 10.3934/cpaa.2005.4.267 |
[9] |
Christian Bläsche, Shawn Means, Carlo R. Laing. Degree assortativity in networks of spiking neurons. Journal of Computational Dynamics, 2020, 7 (2) : 401-423. doi: 10.3934/jcd.2020016 |
[10] |
Shaowen Shi, Weinian Zhang. Bifurcations in an economic model with fractional degree. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020293 |
[11] |
Marc Chamberland, Victor H. Moll. Dynamics of the degree six Landen transformation. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 905-919. doi: 10.3934/dcds.2006.15.905 |
[12] |
Jérôme Buzzi. The degree of Bowen factors and injective codings of diffeomorphisms. Journal of Modern Dynamics, 2020, 16: 1-36. doi: 10.3934/jmd.2020001 |
[13] |
Jaume Llibre, Claudia Valls. Centers for polynomial vector fields of arbitrary degree. Communications on Pure & Applied Analysis, 2009, 8 (2) : 725-742. doi: 10.3934/cpaa.2009.8.725 |
[14] |
Joseph Bayara, André Conseibo, Moussa Ouattara, Artibano Micali. Train algebras of degree 2 and exponent 3. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1371-1386. doi: 10.3934/dcdss.2011.4.1371 |
[15] |
Krzysztof Frączek, Leonid Polterovich. Growth and mixing. Journal of Modern Dynamics, 2008, 2 (2) : 315-338. doi: 10.3934/jmd.2008.2.315 |
[16] |
Cristóbal Camarero, Carmen Martínez, Ramón Beivide. Identifying codes of degree 4 Cayley graphs over Abelian groups. Advances in Mathematics of Communications, 2015, 9 (2) : 129-148. doi: 10.3934/amc.2015.9.129 |
[17] |
Gang Li, Fen Gu, Feida Jiang. Positive viscosity solutions of a third degree homogeneous parabolic infinity Laplace equation. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1449-1462. doi: 10.3934/cpaa.2020071 |
[18] |
Sihong Su. A new construction of rotation symmetric bent functions with maximal algebraic degree. Advances in Mathematics of Communications, 2019, 13 (2) : 253-265. doi: 10.3934/amc.2019017 |
[19] |
Marco Zambon, Chenchang Zhu. Distributions and quotients on degree $1$ NQ-manifolds and Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 469-485. doi: 10.3934/jgm.2012.4.469 |
[20] |
Wei Gao, Juan Luis García Guirao, Mahmoud Abdel-Aty, Wenfei Xi. An independent set degree condition for fractional critical deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 877-886. doi: 10.3934/dcdss.2019058 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]