
Previous Article
Infimum of the metric entropy of hyperbolic attractors with respect to the SRB measure
 DCDS Home
 This Issue

Next Article
$C^1$differentiable conjugacy of Anosov diffeomorphisms on three dimensional torus
Topological entropy for nonuniformly continuous maps
1.  Department of Mathematics, Tufts University, Medford, MA 021555597 
2.  Department of Mathematics, Tufts University, Medford, MA 02155, United States 
3.  Department of Mathematics, University of Massachusetts, Lowell, MA 01854, United States 
[1] 
Zhiming Li, Lin Shu. The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula. Discrete & Continuous Dynamical Systems, 2013, 33 (9) : 41234155. doi: 10.3934/dcds.2013.33.4123 
[2] 
Vladimír Špitalský. Entropy and exact Devaney chaos on totally regular continua. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 31353152. doi: 10.3934/dcds.2013.33.3135 
[3] 
Yangrong Li, Shuang Yang, Guangqing Long. Continuity of random attractors on a topological space and fractional delayed FitzHughNagumo equations with WZnoise. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021303 
[4] 
Ravi Vakil and Aleksey Zinger. A natural smooth compactification of the space of elliptic curves in projective space. Electronic Research Announcements, 2007, 13: 5359. 
[5] 
Prof. Dr.rer.nat Widodo. Topological entropy of shift function on the sequences space induced by expanding piecewise linear transformations. Discrete & Continuous Dynamical Systems, 2002, 8 (1) : 191208. doi: 10.3934/dcds.2002.8.191 
[6] 
Katrin Gelfert. Lower bounds for the topological entropy. Discrete & Continuous Dynamical Systems, 2005, 12 (3) : 555565. doi: 10.3934/dcds.2005.12.555 
[7] 
Jaume Llibre. Brief survey on the topological entropy. Discrete & Continuous Dynamical Systems  B, 2015, 20 (10) : 33633374. doi: 10.3934/dcdsb.2015.20.3363 
[8] 
Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems, 2011, 31 (2) : 545557 . doi: 10.3934/dcds.2011.31.545 
[9] 
Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems  B, 2015, 20 (10) : 35473564. doi: 10.3934/dcdsb.2015.20.3547 
[10] 
Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete & Continuous Dynamical Systems, 2004, 10 (3) : 827833. doi: 10.3934/dcds.2004.10.827 
[11] 
Lluís Alsedà, David Juher, Francesc Mañosas. Forward triplets and topological entropy on trees. Discrete & Continuous Dynamical Systems, 2022, 42 (2) : 623641. doi: 10.3934/dcds.2021131 
[12] 
Xufeng Guo, Gang Liao, Wenxiang Sun, Dawei Yang. On the hybrid control of metric entropy for dominated splittings. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 50115019. doi: 10.3934/dcds.2018219 
[13] 
Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 14691482. doi: 10.3934/dcds.2020325 
[14] 
Huyi Hu, Miaohua Jiang, Yunping Jiang. Infimum of the metric entropy of volume preserving Anosov systems. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 47674783. doi: 10.3934/dcds.2017205 
[15] 
Dong Chen. Positive metric entropy in nondegenerate nearly integrable systems. Journal of Modern Dynamics, 2017, 11: 4356. doi: 10.3934/jmd.2017003 
[16] 
Yuming Zhang. On continuity equations in spacetime domains. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 48374873. doi: 10.3934/dcds.2018212 
[17] 
Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147167. doi: 10.3934/jmd.2015.9.147 
[18] 
Xiaomin Zhou. Relative entropy dimension of topological dynamical systems. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 66316642. doi: 10.3934/dcds.2019288 
[19] 
Yun Zhao, WenChiao Cheng, ChihChang Ho. Qentropy for general topological dynamical systems. Discrete & Continuous Dynamical Systems, 2019, 39 (4) : 20592075. doi: 10.3934/dcds.2019086 
[20] 
Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 7591. doi: 10.3934/jmd.2014.8.75 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]