February  2008, 22(1&2): 427-443. doi: 10.3934/dcds.2008.22.427

Algebro-geometric methods for hard ball systems


Budapest University of Technology and Economics, Institute of Mathematics, Budapest, Egry J. u. 1, H–1111, Hungary

Received  March 2007 Revised  May 2007 Published  June 2008

For the study of hard ball systems, the algebro-geometric approach appeared in 1999 --- in a sense surprisingly but quite efficiently --- for proving the hyperbolicity of typical systems (see [26]). An improvement by Simányi [22] also provided the ergodicity of typical systems, thus an almost complete proof of the Boltzmann--Sinai ergodic hypothesis. More than that, at present, the best form of the local ergodicity theorem for semi-dispersing billiards, [6] also uses algebraic methods (and the algebraicity condition on the scatterers). The goal of the present paper is to discuss the essential steps of the algebro-geometric approach by assuming and using possibly minimum information about hard ball systems. In particular, we also minimize the intersection of the material with the earlier surveys [29] and [20].
Citation: Domokos Szász. Algebro-geometric methods for hard ball systems. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 427-443. doi: 10.3934/dcds.2008.22.427

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151


Péter Bálint, Imre Péter Tóth. Hyperbolicity in multi-dimensional Hamiltonian systems with applications to soft billiards. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 37-59. doi: 10.3934/dcds.2006.15.37


Mickaël Kourganoff. Uniform hyperbolicity in nonflat billiards. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1145-1160. doi: 10.3934/dcds.2018048


Marcin Mazur, Jacek Tabor, Piotr Kościelniak. Semi-hyperbolicity and hyperbolicity. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1029-1038. doi: 10.3934/dcds.2008.20.1029


Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012


Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Raúl Ures. Partial hyperbolicity and ergodicity in dimension three. Journal of Modern Dynamics, 2008, 2 (2) : 187-208. doi: 10.3934/jmd.2008.2.187


Soumya Kundu, Soumitro Banerjee, Damian Giaouris. Vanishing singularity in hard impacting systems. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 319-332. doi: 10.3934/dcdsb.2011.16.319


François Ledrappier, Omri Sarig. Unique ergodicity for non-uniquely ergodic horocycle flows. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 411-433. doi: 10.3934/dcds.2006.16.411


A. V. Bobylev, E. Mossberg. On some properties of linear and linearized Boltzmann collision operators for hard spheres. Kinetic and Related Models, 2008, 1 (4) : 521-555. doi: 10.3934/krm.2008.1.521


Giovanni Forni. A geometric criterion for the nonuniform hyperbolicity of the Kontsevich--Zorich cocycle. Journal of Modern Dynamics, 2011, 5 (2) : 355-395. doi: 10.3934/jmd.2011.5.355


Sebastián J. Ferraro, David Iglesias-Ponte, D. Martín de Diego. Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods. Conference Publications, 2009, 2009 (Special) : 220-229. doi: 10.3934/proc.2009.2009.220


Dmitry Dolgopyat. The work of Federico Rodriguez Hertz on ergodicity of dynamical systems. Journal of Modern Dynamics, 2016, 10: 175-189. doi: 10.3934/jmd.2016.10.175


Nicolas Fournier. A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff. Kinetic and Related Models, 2019, 12 (3) : 483-505. doi: 10.3934/krm.2019020


Shaofei Wu, Mingqing Wang, Maozhu Jin, Yuntao Zou, Lijun Song. Uniform $L^1$ stability of the inelastic Boltzmann equation with large external force for hard potentials. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1005-1013. doi: 10.3934/dcdss.2019068


Anton Trushechkin. Microscopic and soliton-like solutions of the Boltzmann--Enskog and generalized Enskog equations for elastic and inelastic hard spheres. Kinetic and Related Models, 2014, 7 (4) : 755-778. doi: 10.3934/krm.2014.7.755


Lvqiao Liu, Hao Wang. Global existence and decay of solutions for hard potentials to the fokker-planck-boltzmann equation without cut-off. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3113-3136. doi: 10.3934/cpaa.2020135


Corentin Le Bihan. Boltzmann-Grad limit of a hard sphere system in a box with isotropic boundary conditions. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1903-1932. doi: 10.3934/dcds.2021177


Zuohuan Zheng, Jing Xia, Zhiming Zheng. Necessary and sufficient conditions for semi-uniform ergodic theorems and their applications. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 409-417. doi: 10.3934/dcds.2006.14.409


Luciana A. Alves, Luiz A. B. San Martin. Multiplicative ergodic theorem on flag bundles of semi-simple Lie groups. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1247-1273. doi: 10.3934/dcds.2013.33.1247


S. Aubry, G. Kopidakis, V. Kadelburg. Variational proof for hard Discrete breathers in some classes of Hamiltonian dynamical systems. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 271-298. doi: 10.3934/dcdsb.2001.1.271

2020 Impact Factor: 1.392


  • PDF downloads (56)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]