-
Previous Article
Sub-actions for young towers
- DCDS Home
- This Issue
-
Next Article
Growth rates and nonuniform hyperbolicity
Deterministic representation for position dependent random maps
1. | Economics, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom |
2. | Department of Mathematics and Statistics, University of Victoria, P.O. Box 3045, Victoria, BC, Canada V8W 3P4 |
3. | Department of Mathematics and Statistics, University of Victoria, P.O. Box 3060 STN CSC, Victoria, B.C., V8W 3R4, Canada |
[1] |
Simon Lloyd, Edson Vargas. Critical covering maps without absolutely continuous invariant probability measure. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2393-2412. doi: 10.3934/dcds.2019101 |
[2] |
Jawad Al-Khal, Henk Bruin, Michael Jakobson. New examples of S-unimodal maps with a sigma-finite absolutely continuous invariant measure. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 35-61. doi: 10.3934/dcds.2008.22.35 |
[3] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[4] |
Jiu Ding, Aihui Zhou. Absolutely continuous invariant measures for piecewise $C^2$ and expanding mappings in higher dimensions. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 451-458. doi: 10.3934/dcds.2000.6.451 |
[5] |
Adrian Tudorascu. On absolutely continuous curves of probabilities on the line. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5105-5124. doi: 10.3934/dcds.2019207 |
[6] |
Juan A. Calzada, Rafael Obaya, Ana M. Sanz. Continuous separation for monotone skew-product semiflows: From theoretical to numerical results. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 915-944. doi: 10.3934/dcdsb.2015.20.915 |
[7] |
Lucia D. Simonelli. Absolutely continuous spectrum for parabolic flows/maps. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 263-292. doi: 10.3934/dcds.2018013 |
[8] |
Peng Sun. Measures of intermediate entropies for skew product diffeomorphisms. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1219-1231. doi: 10.3934/dcds.2010.27.1219 |
[9] |
Dariusz Skrenty. Absolutely continuous spectrum of some group extensions of Gaussian actions. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 365-378. doi: 10.3934/dcds.2010.26.365 |
[10] |
P.E. Kloeden, Victor S. Kozyakin. The perturbation of attractors of skew-product flows with a shadowing driving system. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 883-893. doi: 10.3934/dcds.2001.7.883 |
[11] |
Saša Kocić. Reducibility of skew-product systems with multidimensional Brjuno base flows. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 261-283. doi: 10.3934/dcds.2011.29.261 |
[12] |
Tomás Caraballo, Alexandre N. Carvalho, Henrique B. da Costa, José A. Langa. Equi-attraction and continuity of attractors for skew-product semiflows. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 2949-2967. doi: 10.3934/dcdsb.2016081 |
[13] |
Julia Brettschneider. On uniform convergence in ergodic theorems for a class of skew product transformations. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 873-891. doi: 10.3934/dcds.2011.29.873 |
[14] |
Hsuan-Wen Su. Finding invariant tori with Poincare's map. Communications on Pure and Applied Analysis, 2008, 7 (2) : 433-443. doi: 10.3934/cpaa.2008.7.433 |
[15] |
Piotr Kościelniak, Marcin Mazur, Piotr Oprocha, Paweł Pilarczyk. Shadowing is generic---a continuous map case. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3591-3609. doi: 10.3934/dcds.2014.34.3591 |
[16] |
Luigi Ambrosio, Federico Glaudo, Dario Trevisan. On the optimal map in the $ 2 $-dimensional random matching problem. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 7291-7308. doi: 10.3934/dcds.2019304 |
[17] |
Ji Li, Kening Lu, Peter W. Bates. Invariant foliations for random dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3639-3666. doi: 10.3934/dcds.2014.34.3639 |
[18] |
Jonathan C. Mattingly, Etienne Pardoux. Invariant measure selection by noise. An example. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4223-4257. doi: 10.3934/dcds.2014.34.4223 |
[19] |
Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118. |
[20] |
Xi Chen, Zongrun Wang, Songhai Deng, Yong Fang. Risk measure optimization: Perceived risk and overconfidence of structured product investors. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1473-1492. doi: 10.3934/jimo.2018105 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]