September  2008, 22(3): 663-682. doi: 10.3934/dcds.2008.22.663

A combinatorial classification of postsingularly finite complex exponential maps

1. 

Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany

2. 

School of Engineering and Science, Jacobs University Bremen, Postfach 750 561, D-28725 Bremen, Germany

3. 

Department of Mathematics, University of Southern California, Los Angeles, CA 90089, United States

Received  June 2007 Revised  April 2008 Published  August 2008

We give a combinatorial classification of postsingularly finite exponential maps in terms of external addresses starting with the entry $0$. This extends the classification results for critically preperiodic polynomials [2] to exponential maps. Our proof relies on the topological characterization of postsingularly finite exponential maps given recently in [14]. These results illustrate once again the fruitful interplay between combinatorics, topology and complex structure which has often been successful in complex dynamics.
Citation: Bastian Laubner, Dierk Schleicher, Vlad Vicol. A combinatorial classification of postsingularly finite complex exponential maps. Discrete & Continuous Dynamical Systems, 2008, 22 (3) : 663-682. doi: 10.3934/dcds.2008.22.663
[1]

David Lubicz. On a classification of finite statistical tests. Advances in Mathematics of Communications, 2007, 1 (4) : 509-524. doi: 10.3934/amc.2007.1.509

[2]

Ralf Spatzier, Lei Yang. Exponential mixing and smooth classification of commuting expanding maps. Journal of Modern Dynamics, 2017, 11: 263-312. doi: 10.3934/jmd.2017012

[3]

Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete & Continuous Dynamical Systems, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997

[4]

Zilong Wang, Guang Gong. Correlation of binary sequence families derived from the multiplicative characters of finite fields. Advances in Mathematics of Communications, 2013, 7 (4) : 475-484. doi: 10.3934/amc.2013.7.475

[5]

James Benn. Fredholm properties of the $L^{2}$ exponential map on the symplectomorphism group. Journal of Geometric Mechanics, 2016, 8 (1) : 1-12. doi: 10.3934/jgm.2016.8.1

[6]

Lori Alvin. Toeplitz kneading sequences and adding machines. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3277-3287. doi: 10.3934/dcds.2013.33.3277

[7]

Yoshikazu Giga, Hirotoshi Kuroda. A counterexample to finite time stopping property for one-harmonic map flow. Communications on Pure & Applied Analysis, 2015, 14 (1) : 121-125. doi: 10.3934/cpaa.2015.14.121

[8]

Denis Volk. Almost every interval translation map of three intervals is finite type. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 2307-2314. doi: 10.3934/dcds.2014.34.2307

[9]

Guangmei Shao, Wei Xue, Gaohang Yu, Xiao Zheng. Improved SVRG for finite sum structure optimization with application to binary classification. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2253-2266. doi: 10.3934/jimo.2019052

[10]

Mehmet Duran Toksari, Emel Kizilkaya Aydogan, Berrin Atalay, Saziye Sari. Some scheduling problems with sum of logarithm processing times based learning effect and exponential past sequence dependent delivery times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021044

[11]

Song Wang, Xia Lou. An optimization approach to the estimation of effective drug diffusivity: From a planar disc into a finite external volume. Journal of Industrial & Management Optimization, 2009, 5 (1) : 127-140. doi: 10.3934/jimo.2009.5.127

[12]

Juanjuan Huang, Yan Zhou, Xuerong Shi, Zuolei Wang. A single finite-time synchronization scheme of time-delay chaotic system with external periodic disturbance. Mathematical Foundations of Computing, 2019, 2 (4) : 333-346. doi: 10.3934/mfc.2019021

[13]

Claudio Bonanno, Carlo Carminati, Stefano Isola, Giulio Tiozzo. Dynamics of continued fractions and kneading sequences of unimodal maps. Discrete & Continuous Dynamical Systems, 2013, 33 (4) : 1313-1332. doi: 10.3934/dcds.2013.33.1313

[14]

Qingqing Ye. Algorithmic computation of MAP/PH/1 queue with finite system capacity and two-stage vacations. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2459-2477. doi: 10.3934/jimo.2019063

[15]

Marko Budišić, Stefan Siegmund, Doan Thai Son, Igor Mezić. Mesochronic classification of trajectories in incompressible 3D vector fields over finite times. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 923-958. doi: 10.3934/dcdss.2016035

[16]

Lars Eirik Danielsen. Graph-based classification of self-dual additive codes over finite fields. Advances in Mathematics of Communications, 2009, 3 (4) : 329-348. doi: 10.3934/amc.2009.3.329

[17]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, 2021, 29 (3) : 2445-2456. doi: 10.3934/era.2020123

[18]

M. Syed Ali, L. Palanisamy, Nallappan Gunasekaran, Ahmed Alsaedi, Bashir Ahmad. Finite-time exponential synchronization of reaction-diffusion delayed complex-dynamical networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1465-1477. doi: 10.3934/dcdss.2020395

[19]

Peter Giesl, James McMichen. Determination of the area of exponential attraction in one-dimensional finite-time systems using meshless collocation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1835-1850. doi: 10.3934/dcdsb.2018094

[20]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]