September  2008, 22(3): 759-789. doi: 10.3934/dcds.2008.22.759

Two parameter families of binary differential equations

1. 

Department of Mathematical Sciences, University of Durham, Science Laboratories, South Road, Durham DH1 3LE

Received  February 2007 Revised  March 2008 Published  August 2008

We obtain in this paper topological models of binary differential equation at local codimension 2 singularities where all the coefficients of the equation vanish at the singular point. We also study the bifurcations of these singularities when the equation is deformed in a generic 2-parameter families of equations.
Citation: Farid Tari. Two parameter families of binary differential equations. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 759-789. doi: 10.3934/dcds.2008.22.759
[1]

J.W. Bruce, F. Tari. Generic 1-parameter families of binary differential equations of Morse type. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 79-90. doi: 10.3934/dcds.1997.3.79

[2]

Miriam Manoel, Patrícia Tempesta. Binary differential equations with symmetries. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1957-1974. doi: 10.3934/dcds.2019082

[3]

Ulrike Kant, Werner M. Seiler. Singularities in the geometric theory of differential equations. Conference Publications, 2011, 2011 (Special) : 784-793. doi: 10.3934/proc.2011.2011.784

[4]

Farid Tari. Two-parameter families of implicit differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 139-162. doi: 10.3934/dcds.2005.13.139

[5]

Klaudiusz Wójcik, Piotr Zgliczyński. Topological horseshoes and delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 827-852. doi: 10.3934/dcds.2005.12.827

[6]

Luis Barreira, Liviu Horia Popescu, Claudia Valls. Generalized exponential behavior and topological equivalence. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3023-3042. doi: 10.3934/dcdsb.2017161

[7]

Andres del Junco, Daniel J. Rudolph, Benjamin Weiss. Measured topological orbit and Kakutani equivalence. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 221-238. doi: 10.3934/dcdss.2009.2.221

[8]

Kunquan Lan. Eigenvalues of second order differential equations with singularities. Conference Publications, 2001, 2001 (Special) : 241-247. doi: 10.3934/proc.2001.2001.241

[9]

Kai-Uwe Schmidt, Jonathan Jedwab, Matthew G. Parker. Two binary sequence families with large merit factor. Advances in Mathematics of Communications, 2009, 3 (2) : 135-156. doi: 10.3934/amc.2009.3.135

[10]

Giuseppe Buttazzo, Luigi De Pascale, Ilaria Fragalà. Topological equivalence of some variational problems involving distances. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 247-258. doi: 10.3934/dcds.2001.7.247

[11]

Anna Capietto, Walter Dambrosio. A topological degree approach to sublinear systems of second order differential equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 861-874. doi: 10.3934/dcds.2000.6.861

[12]

Zilong Wang, Guang Gong. Correlation of binary sequence families derived from the multiplicative characters of finite fields. Advances in Mathematics of Communications, 2013, 7 (4) : 475-484. doi: 10.3934/amc.2013.7.475

[13]

Mike Crampin, David Saunders. Homogeneity and projective equivalence of differential equation fields. Journal of Geometric Mechanics, 2012, 4 (1) : 27-47. doi: 10.3934/jgm.2012.4.27

[14]

Mohammed Al Horani, Angelo Favini. Inverse problems for singular differential-operator equations with higher order polar singularities. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2159-2168. doi: 10.3934/dcdsb.2014.19.2159

[15]

F. Balibrea, J. C. Valverde. Extreme degenerations for some generic bifurcations and new transversality conditions. Conference Publications, 2001, 2001 (Special) : 22-30. doi: 10.3934/proc.2001.2001.22

[16]

Mickaël D. Chekroun. Topological instabilities in families of semilinear parabolic problems subject to nonlinear perturbations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3723-3753. doi: 10.3934/dcdsb.2018075

[17]

Zalman Balanov, Meymanat Farzamirad, Wieslaw Krawcewicz, Haibo Ruan. Applied equivariant degree. part II: Symmetric Hopf bifurcations of functional differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 923-960. doi: 10.3934/dcds.2006.16.923

[18]

Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 667-700. doi: 10.3934/dcdsb.2018038

[19]

C. Alonso-González, M. I. Camacho, F. Cano. Topological invariants for singularities of real vector fields in dimension three. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 823-847. doi: 10.3934/dcds.2008.20.823

[20]

J. Gwinner. On differential variational inequalities and projected dynamical systems - equivalence and a stability result. Conference Publications, 2007, 2007 (Special) : 467-476. doi: 10.3934/proc.2007.2007.467

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]