• Previous Article
    Asymptotic behavior of population dynamics models with nonlocal distributed delays
  • DCDS Home
  • This Issue
  • Next Article
    Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface
December  2008, 22(4): 835-860. doi: 10.3934/dcds.2008.22.835

Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping

1. 

Department of Mathematics, University of Virginia, Charlottesville, VA 22904, United States, United States

Received  June 2007 Revised  September 2007 Published  September 2008

We consider finite energy solutions of a wave equation with supercritical nonlinear sources and nonlinear damping. A distinct feature of the model under consideration is the presence of nonlinear sources on the boundary driven by Neumann boundary conditions. Since Lopatinski condition fails to hold (unless the $\text{dim} (\Omega) = 1$), the analysis of the nonlinearities supported on the boundary, within the framework of weak solutions, is a rather subtle issue and involves the strong interaction between the source and the damping. Thus, it is not surprising that existence theory for this class of problems has been established only recently. However, the uniqueness of weak solutions was declared an open problem. The main result in this work is uniqueness of weak solutions. This result is proved for the same (even larger) class of data for which existence theory holds. In addition, we prove that weak solutions are continuously depending on initial data and that the flow corresponding to weak and global solutions is a dynamical system on the finite energy space.
Citation: Lorena Bociu, Irena Lasiecka. Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 835-860. doi: 10.3934/dcds.2008.22.835
[1]

Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459

[2]

Tae Gab Ha. On viscoelastic wave equation with nonlinear boundary damping and source term. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1543-1576. doi: 10.3934/cpaa.2010.9.1543

[3]

Belkacem Said-Houari, Flávio A. Falcão Nascimento. Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction. Communications on Pure & Applied Analysis, 2013, 12 (1) : 375-403. doi: 10.3934/cpaa.2013.12.375

[4]

Lorena Bociu, Petronela Radu. Existence of weak solutions to the Cauchy problem of a semilinear wave equation with supercritical interior source and damping. Conference Publications, 2009, 2009 (Special) : 60-71. doi: 10.3934/proc.2009.2009.60

[5]

Giuseppina Autuori, Patrizia Pucci. Kirchhoff systems with nonlinear source and boundary damping terms. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1161-1188. doi: 10.3934/cpaa.2010.9.1161

[6]

A. Kh. Khanmamedov. Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 119-138. doi: 10.3934/dcds.2011.31.119

[7]

Claudianor O. Alves, M. M. Cavalcanti, Valeria N. Domingos Cavalcanti, Mohammad A. Rammaha, Daniel Toundykov. On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 583-608. doi: 10.3934/dcdss.2009.2.583

[8]

Peter V. Gordon, Cyrill B. Muratov. Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks & Heterogeneous Media, 2012, 7 (4) : 767-780. doi: 10.3934/nhm.2012.7.767

[9]

A. Kh. Khanmamedov. Long-time behaviour of wave equations with nonlinear interior damping. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1185-1198. doi: 10.3934/dcds.2008.21.1185

[10]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[11]

Jong-Shenq Guo, Bei Hu. Blowup rate estimates for the heat equation with a nonlinear gradient source term. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 927-937. doi: 10.3934/dcds.2008.20.927

[12]

Thierry Cazenave, Yvan Martel, Lifeng Zhao. Finite-time blowup for a Schrödinger equation with nonlinear source term. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1171-1183. doi: 10.3934/dcds.2019050

[13]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure & Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[14]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[15]

Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377

[16]

Yacheng Liu, Runzhang Xu. Wave equations and reaction-diffusion equations with several nonlinear source terms of different sign. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 171-189. doi: 10.3934/dcdsb.2007.7.171

[17]

Nicolas Fourrier, Irena Lasiecka. Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions. Evolution Equations & Control Theory, 2013, 2 (4) : 631-667. doi: 10.3934/eect.2013.2.631

[18]

Aníbal Rodríguez-Bernal, Enrique Zuazua. Parabolic singular limit of a wave equation with localized boundary damping. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 303-346. doi: 10.3934/dcds.1995.1.303

[19]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[20]

Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control & Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (32)

Other articles
by authors

[Back to Top]